-
1
-
-
39749200807
-
-
10.1126/science.1148820
-
D. A. Muller, L. Fitting Kourkoutis, M. Murfitt, J. H. Song, H. Y. Hwang, J. Silcox, N. Dellby, and O. L. Krivanek, Science 319, 1073 (2008). 10.1126/science.1148820
-
(2008)
Science
, vol.319
, pp. 1073
-
-
Muller, D.A.1
Fitting Kourkoutis, L.2
Murfitt, M.3
Song, J.H.4
Hwang, H.Y.5
Silcox, J.6
Dellby, N.7
Krivanek, O.L.8
-
2
-
-
62149110037
-
-
10.1103/PhysRevB.79.085117
-
M. Varela, M. P. Oxley, W. Luo, J. Tao, M. Watanabe, A. R. Lupini, S. T. Pantelides, and S. J. Pennycook, Phys. Rev. B 79, 085117 (2009). 10.1103/PhysRevB.79.085117
-
(2009)
Phys. Rev. B
, vol.79
, pp. 085117
-
-
Varela, M.1
Oxley, M.P.2
Luo, W.3
Tao, J.4
Watanabe, M.5
Lupini, A.R.6
Pantelides, S.T.7
Pennycook, S.J.8
-
3
-
-
79952610931
-
-
10.1021/nl1034896
-
J. Gazquez, W. Luo, M. P. Oxley, M. Prange, M. A. Torija, M. Sharma, C. Leighton, S. T. Pantelides, S. J. Pennycook, and M. Varela, Nano Lett. 11, 973 (2011). 10.1021/nl1034896
-
(2011)
Nano Lett.
, vol.11
, pp. 973
-
-
Gazquez, J.1
Luo, W.2
Oxley, M.P.3
Prange, M.4
Torija, M.A.5
Sharma, M.6
Leighton, C.7
Pantelides, S.T.8
Pennycook, S.J.9
Varela, M.10
-
4
-
-
80052372241
-
-
10.1103/PhysRevLett.107.107602
-
H. Tan, S. Turner, E. Yücelen, J. Verbeeck, and G. Van Tendeloo, Phys. Rev. Lett. 107, 107602 (2011). 10.1103/PhysRevLett.107.107602
-
(2011)
Phys. Rev. Lett.
, vol.107
, pp. 107602
-
-
Tan, H.1
Turner, S.2
Yücelen, E.3
Verbeeck, J.4
Van Tendeloo, G.5
-
5
-
-
84859962392
-
-
10.1063/1.4704558
-
M. Haruta, K. Kurashima, T. Nagai, H. Komatsu, Y. Shimakawa, H. Kurata, and K. Kimoto, Appl. Phys. Lett. 100, 163107 (2012). 10.1063/1.4704558
-
(2012)
Appl. Phys. Lett.
, vol.100
, pp. 163107
-
-
Haruta, M.1
Kurashima, K.2
Nagai, T.3
Komatsu, H.4
Shimakawa, Y.5
Kurata, H.6
Kimoto, K.7
-
6
-
-
84864462525
-
-
10.1063/1.4737208
-
J. A. Mundy, Q. Mao, C. M. Brooks, D. G. Schlom, and D. A. Muller, Appl. Phys. Lett. 101, 042907 (2012). 10.1063/1.4737208
-
(2012)
Appl. Phys. Lett.
, vol.101
, pp. 042907
-
-
Mundy, J.A.1
Mao, Q.2
Brooks, C.M.3
Schlom, D.G.4
Muller, D.A.5
-
7
-
-
84864436676
-
-
10.1103/PhysRevB.86.024108
-
B. D. Forbes, A. J. DAlfonso, R. E. A. Williams, R. Srinivasan, H. L. Fraser, D. W. McComb, B. Freitag, D. O. Klenov, and L. J. Allen, Phys. Rev. B 86, 024108 (2012). 10.1103/PhysRevB.86.024108
-
(2012)
Phys. Rev. B
, vol.86
, pp. 024108
-
-
Forbes, B.D.1
Dalfonso, A.J.2
Williams, R.E.A.3
Srinivasan, R.4
Fraser, H.L.5
McComb, D.W.6
Freitag, B.7
Klenov, D.O.8
Allen, L.J.9
-
8
-
-
73249114216
-
-
10.1103/PhysRevB.80.184108
-
C. Witte, S. D. Findlay, M. P. Oxley, J. J. Rehr, and L. J. Allen, Phys. Rev. B 80, 184108 (2009). 10.1103/PhysRevB.80.184108
-
(2009)
Phys. Rev. B
, vol.80
, pp. 184108
-
-
Witte, C.1
Findlay, S.D.2
Oxley, M.P.3
Rehr, J.J.4
Allen, L.J.5
-
10
-
-
0037410918
-
-
10.1016/S0304-3991(02)00380-7
-
L. J. Allen, S. D. Findlay, M. P. Oxley, and C. J. Rossouw, Ultramicroscopy 96, 47 (2003). 10.1016/S0304-3991(02)00380-7
-
(2003)
Ultramicroscopy
, vol.96
, pp. 47
-
-
Allen, L.J.1
Findlay, S.D.2
Oxley, M.P.3
Rossouw, C.J.4
-
12
-
-
84868650205
-
-
To simulate EELS images when the detector collection aperture is smaller than the probe-forming aperture requires a more general (and more complicated) expression. However, recent technological advances have allowed acceptance angles that collect the majority of the inelastically scattered electrons, validating the simpler so-called local expression used here.
-
To simulate EELS images when the detector collection aperture is smaller than the probe-forming aperture requires a more general (and more complicated) expression. However, recent technological advances have allowed acceptance angles that collect the majority of the inelastically scattered electrons, validating the simpler so-called local expression used here.
-
-
-
-
13
-
-
0031945495
-
-
10.1046/j.1365-2818.1998.3260881.x
-
P. D. Nellist and S. J. Pennycook, J. Microsc. 190, 159 (1998). 10.1046/j.1365-2818.1998.3260881.x
-
(1998)
J. Microsc.
, vol.190
, pp. 159
-
-
Nellist, P.D.1
Pennycook, S.J.2
-
15
-
-
77957592237
-
-
10.1103/PhysRevB.82.104103
-
B. D. Forbes, A. V. Martin, S. D. Findlay, A. J. DAlfonso, and L. J. Allen, Phys. Rev. B 82, 104103 (2010). 10.1103/PhysRevB.82.104103
-
(2010)
Phys. Rev. B
, vol.82
, pp. 104103
-
-
Forbes, B.D.1
Martin, A.V.2
Findlay, S.D.3
Dalfonso, A.J.4
Allen, L.J.5
-
16
-
-
0004161838
-
-
Fortran Numerical Recipes (Cambridge University Press, Cambridge).
-
W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes in FORTRAN 77, Fortran Numerical Recipes (Cambridge University Press, Cambridge, 1992).
-
(1992)
Numerical Recipes in FORTRAN 77
-
-
Press, W.1
Flannery, B.2
Teukolsky, S.3
Vetterling, W.4
-
17
-
-
78651302922
-
-
(Society for Industrial and Applied Mathematics, Philadelphia).
-
P. C. Hansen, Discrete Inverse Problems (Society for Industrial and Applied Mathematics, Philadelphia, 2010).
-
(2010)
Discrete Inverse Problems
-
-
Hansen, P.C.1
-
18
-
-
84868633457
-
-
See supplementary material at E-APPLAB-101-107245 for both gray scale and color versions of the full movie.
-
See supplementary material at http://dx.doi.org/10.1063/1.4765657 E-APPLAB-101-107245 for both gray scale and color versions of the full movie.
-
-
-
-
19
-
-
84864776637
-
-
10.1017/S1431927612000244
-
P. Cueva, R. Hovden, J. A. Mundy, H. L. Xin, and D. A. Muller, Microsc. Microanal. 18, 667 (2012). 10.1017/S1431927612000244
-
(2012)
Microsc. Microanal.
, vol.18
, pp. 667
-
-
Cueva, P.1
Hovden, R.2
Mundy, J.A.3
Xin, H.L.4
Muller, D.A.5
-
21
-
-
33750010353
-
-
10.1016/j.micron.2006.03.010
-
C. Hébert, Micron 38, 12 (2007). 10.1016/j.micron.2006.03.010
-
(2007)
Micron
, vol.38
, pp. 12
-
-
Hébert, C.1
-
22
-
-
84868633456
-
-
The WIEN2K calculations, assuming an incident plane wave but the full detector geometry to be consistent with the inverted data, were based on a local density approximation (LDA) with a Hubbard-like, localized term added to the LDA density functional (LDA U) for the Cu-3d orbital. A core-hole was introduced at the oxygen sites and the calculated spectra were shifted to get best agreement with experiment.
-
The WIEN2K calculations, assuming an incident plane wave but the full detector geometry to be consistent with the inverted data, were based on a local density approximation (LDA) with a Hubbard-like, localized term added to the LDA density functional (LDA U) for the Cu-3d orbital. A core-hole was introduced at the oxygen sites and the calculated spectra were shifted to get best agreement with experiment.
-
-
-
|