메뉴 건너뛰기




Volumn 29, Issue 5, 2012, Pages 506-525

Relaxed constraints support vector machine

Author keywords

importance degree; one class classification; support vector machines; tolerance; uncertainty

Indexed keywords

DATA WITH TOLERANCE; FUZZY SVM; IMPORTANCE DEGREE; ONE-CLASS CLASSIFICATION; REAL LIFE DATASETS; TRAINING SAMPLE; UNCERTAINTY;

EID: 84868549943     PISSN: 02664720     EISSN: 14680394     Source Type: Journal    
DOI: 10.1111/j.1468-0394.2011.00611.x     Document Type: Article
Times cited : (8)

References (34)
  • 2
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C.J.C., (1998) A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, 2, 121-167.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 3
    • 33750110579 scopus 로고    scopus 로고
    • Research and application of noise suppression based on support vector machine
    • Chen, C., X. Qi, and, M. Lin, (2005) Research and application of noise suppression based on support vector machine, in Proceedings of ISCIT, 346-349.
    • (2005) Proceedings of ISCIT , pp. 346-349
    • Chen, C.1    Qi, X.2    Lin, M.3
  • 5
    • 33750455785 scopus 로고    scopus 로고
    • A new medical decision making system: Least square support vector machine (LSSVM) with fuzzy weighting pre-processing
    • Comak, E., K. Polat, S. Güneå, and, A. Arslan, (2007) A new medical decision making system: least square support vector machine (LSSVM) with fuzzy weighting pre-processing, Expert Systems with Applications, 32, 409-414.
    • (2007) Expert Systems with Applications , vol.32 , pp. 409-414
    • Comak, E.1    Polat, K.2    Güneå, S.3    Arslan, A.4
  • 6
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes, C., and, V. Vapnik, (1995) Support vector networks, Machine Learning, 20, 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 7
    • 77949490233 scopus 로고    scopus 로고
    • Object classification by fusing SVMs and Gaussian mixtures
    • Deselaers, T., G. Heigold, and, H. Ney, (2010) Object classification by fusing SVMs and Gaussian mixtures, Pattern Recognition, 43, 2476-2484.
    • (2010) Pattern Recognition , vol.43 , pp. 2476-2484
    • Deselaers, T.1    Heigold, G.2    Ney, H.3
  • 8
    • 34347333289 scopus 로고    scopus 로고
    • Local-density based spatial clustering algorithm with noise
    • Duan, L., L. Xu, F. Guo, and, B. Yan, (2007) Local-density based spatial clustering algorithm with noise, Information Systems, 32, 978-986.
    • (2007) Information Systems , vol.32 , pp. 978-986
    • Duan, L.1    Xu, L.2    Guo, F.3    Yan, B.4
  • 11
    • 70649100043 scopus 로고    scopus 로고
    • New support vector algorithms with parametric insensitive/margin model
    • Hao, P.Y., (2010) New support vector algorithms with parametric insensitive/margin model, Neural Network, 23, 60-73.
    • (2010) Neural Network , vol.23 , pp. 60-73
    • Hao, P.Y.1
  • 12
    • 79952445289 scopus 로고    scopus 로고
    • The adaptive approach for storage assignment by mining data of warehouse management system for distribution centres
    • Huang, D., C.P. Lin, and, M.C. Chen, (2011) The adaptive approach for storage assignment by mining data of warehouse management system for distribution centres, Enterprise Information Systems, 5, 219-234.
    • (2011) Enterprise Information Systems , vol.5 , pp. 219-234
    • Huang, D.1    Lin, C.P.2    Chen, M.C.3
  • 13
    • 21744445979 scopus 로고    scopus 로고
    • Fuzzy linear proximal support vector machines for multi-category data classification
    • Jayadeva, R.K., and, S. Chandra, (2005) Fuzzy linear proximal support vector machines for multi-category data classification, Neurocomputing, 67, 426-435.
    • (2005) Neurocomputing , vol.67 , pp. 426-435
    • Jayadeva, R.K.1    Chandra, S.2
  • 17
    • 4644290661 scopus 로고    scopus 로고
    • Training algorithms for fuzzy support vector machines with noisy data
    • Lin, C.F., and, S.D. Wang, (2004) Training algorithms for fuzzy support vector machines with noisy data, Pattern Recognition Letters, 25, 1647-1656.
    • (2004) Pattern Recognition Letters , vol.25 , pp. 1647-1656
    • Lin, C.F.1    Wang, S.D.2
  • 18
    • 34548020614 scopus 로고    scopus 로고
    • A flood decision support system on agent grid: Method and implementation
    • Luo, J., L. Xu, J.P. Jamont, L. Zeng, and, Z. Shi, (2007) A flood decision support system on agent grid: method and implementation, Enterprise Information Systems, 1, 49-68.
    • (2007) Enterprise Information Systems , vol.1 , pp. 49-68
    • Luo, J.1    Xu, L.2    Jamont, J.P.3    Zeng, L.4    Shi, Z.5
  • 19
    • 0003408496 scopus 로고
    • http://www.ics.uci.edu/~mlearn/MLRepository.html, Irvine, CA: University of California, Department of Information and Computer Science
    • Murphy, P.M, and, K.W. Aha, (1994) UCI Repository of Machine Learning Databases, http://www.ics.uci.edu/~mlearn/MLRepository.html, Irvine, CA: University of California, Department of Information and Computer Science.
    • (1994) UCI Repository of Machine Learning Databases
    • Murphy, P.M.1    Aha, K.W.2
  • 20
    • 69249212288 scopus 로고    scopus 로고
    • A normal least squares support vector machine (NLS-SVM) and its learning algorithm
    • Peng, X., and, Y. Wang, (2009) A normal least squares support vector machine (NLS-SVM) and its learning algorithm, Neurocomputing, 72, 3734-3741.
    • (2009) Neurocomputing , vol.72 , pp. 3734-3741
    • Peng, X.1    Wang, Y.2
  • 24
    • 7444228338 scopus 로고    scopus 로고
    • The CRISP-DM model: The new blueprint for data mining
    • Shearer, C., (2000) The CRISP-DM model: the new blueprint for data mining, Journal of Data Warehousing, 5, 13-22.
    • (2000) Journal of Data Warehousing , vol.5 , pp. 13-22
    • Shearer, C.1
  • 25
    • 39749105930 scopus 로고    scopus 로고
    • Noise reduction of chaotic systems based on least squares support vector machines communications
    • Sun, J., and, Y. Zhou, (2006) Noise reduction of chaotic systems based on least squares support vector machines communications, Proceedings of International Conference on Circuits and Systems, 1, 336-339.
    • (2006) Proceedings of International Conference on Circuits and Systems , vol.1 , pp. 336-339
    • Sun, J.1    Zhou, Y.2
  • 27
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping M.E., (2001) Sparse Bayesian learning and the relevance vector machine, Journal of Machine Learning Research, 1, 211-244.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 29
    • 30344453065 scopus 로고    scopus 로고
    • A new fuzzy support vector machine to evaluate credit risk
    • Wang Y., S. Wang, and, K.K. Lai, (2005) A new fuzzy support vector machine to evaluate credit risk, IEEE Transactions on Fuzzy Systems, 13, 820-831.
    • (2005) IEEE Transactions on Fuzzy Systems , vol.13 , pp. 820-831
    • Wang, Y.1    Wang, S.2    Lai, K.K.3
  • 30
    • 33947110577 scopus 로고    scopus 로고
    • Fuzzy support vector machine for multi-class text categorization
    • Wang, T.Y., and, H.M. Chiang, (2007) Fuzzy support vector machine for multi-class text categorization, Information Processing and Management, 43, 914-929.
    • (2007) Information Processing and Management , vol.43 , pp. 914-929
    • Wang, T.Y.1    Chiang, H.M.2
  • 33
    • 77954758321 scopus 로고    scopus 로고
    • An SVM-based machine learning method for accurate internet traffic classification
    • Yuan, R., Z. Li, X. Guan, and, L. Xu, (2010) An SVM-based machine learning method for accurate internet traffic classification, Information System, 12, 149-156.
    • (2010) Information System , vol.12 , pp. 149-156
    • Yuan, R.1    Li, Z.2    Guan, X.3    Xu, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.