메뉴 건너뛰기




Volumn 220, Issue , 2013, Pages 46-63

Fuzzy Passive-Aggressive classification: A robust and efficient algorithm for online classification problems

Author keywords

Fuzzy Passive Aggressive; Fuzzy weighting; Online classification; Pairwise distance; Passive Aggressive; Radar emitter recognition

Indexed keywords

FUZZY PASSIVE-AGGRESSIVE; FUZZY WEIGHTING; ON-LINE CLASSIFICATION; PAIRWISE-DISTANCE; PASSIVE-AGGRESSIVE; RADAR EMITTERS;

EID: 84868491230     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2012.06.023     Document Type: Conference Paper
Times cited : (52)

References (47)
  • 1
    • 0029242750 scopus 로고
    • A method for fuzzy rules extraction directly from numerical data and its application to pattern classification
    • S. Abe A method for fuzzy rules extraction directly from numerical data and its application to pattern classification IEEE Transaction on Fuzzy System 3 1 1995 18 28
    • (1995) IEEE Transaction on Fuzzy System , vol.3 , Issue.1 , pp. 18-28
    • Abe, S.1
  • 2
    • 1142279663 scopus 로고    scopus 로고
    • An approach for fuzzy rule-base adaptation using on-line clustering
    • P. Angelov An approach for fuzzy rule-base adaptation using on-line clustering International Journal of Approximate Reasoning 35 2004 275 289
    • (2004) International Journal of Approximate Reasoning , vol.35 , pp. 275-289
    • Angelov, P.1
  • 3
    • 77953089698 scopus 로고    scopus 로고
    • FSVM-CIL: Fuzzy support vector machines for class imbalance learning
    • R. Batuwita, and V. Palade FSVM-CIL: fuzzy support vector machines for class imbalance learning IEEE Transaction on Fuzzy Systems 18 3 2010 558 571
    • (2010) IEEE Transaction on Fuzzy Systems , vol.18 , Issue.3 , pp. 558-571
    • Batuwita, R.1    Palade, V.2
  • 4
    • 75149139352 scopus 로고    scopus 로고
    • GP-COACH: Genetic programming-based learning of compact and accurate fuzzy rule-based classification systems for high-dimensional problems
    • F.J. Berlanga, A.J. Rivera, M.J. del Jesus, and F. Herrera GP-COACH: genetic programming-based learning of compact and accurate fuzzy rule-based classification systems for high-dimensional problems Information Sciences 180 2010 1183 1200
    • (2010) Information Sciences , vol.180 , pp. 1183-1200
    • Berlanga, F.J.1    Rivera, A.J.2    Del Jesus, M.J.3    Herrera, F.4
  • 7
    • 33748339019 scopus 로고    scopus 로고
    • Towards incremental fuzzy classifiers
    • A. Bouchachia, and R. Mittermeir Towards incremental fuzzy classifiers Soft Computing 11 2007 193 207
    • (2007) Soft Computing , vol.11 , pp. 193-207
    • Bouchachia, A.1    Mittermeir, R.2
  • 8
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C.J.C. Burges A tutorial on support vector machines for pattern recognition Data Mining and Knowledge Discovery 2 1998 121 167
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 9
    • 0003238552 scopus 로고    scopus 로고
    • Incremental and decremental support vector machine learning
    • MIT Press Cambridge, MA
    • G. Cauwenberghs, and T. Poggio Incremental and decremental support vector machine learning Advances in Neural Information Processing Systems vol. 13 2000 MIT Press Cambridge, MA pp. 409-415
    • (2000) Advances in Neural Information Processing Systems , vol.13 , pp. 409-415
    • Cauwenberghs, G.1    Poggio, T.2
  • 10
    • 34447271025 scopus 로고    scopus 로고
    • Extraction of fuzzy rules from support vector machines
    • J. Castro, L.F. Hidalgo, C. Mantas, and J. Puche Extraction of fuzzy rules from support vector machines Fuzzy Sets Systems 158 2007 2057 2077
    • (2007) Fuzzy Sets Systems , vol.158 , pp. 2057-2077
    • Castro, J.1    Hidalgo, L.F.2    Mantas, C.3    Puche, J.4
  • 11
    • 59149084385 scopus 로고    scopus 로고
    • Moving towards efficient decision tree construction
    • B. Chandra, and P.P. Varghese Moving towards efficient decision tree construction Information Sciences 179 2009 1059 1069
    • (2009) Information Sciences , vol.179 , pp. 1059-1069
    • Chandra, B.1    Varghese, P.P.2
  • 18
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • P. Domingos, and M. Pazzani On the optimality of the simple Bayesian classifier under zero-one loss Machine Learning 1997 103 130
    • (1997) Machine Learning , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 19
    • 77958153264 scopus 로고    scopus 로고
    • So near and yet so far: New insight into properties of some well-known classifier paradigms
    • D. Fisch, B. Kühbeck, B. Sick, and S.J. Ovaska So near and yet so far: new insight into properties of some well-known classifier paradigms Information Sciences 180 2010 3381 3401
    • (2010) Information Sciences , vol.180 , pp. 3381-3401
    • Fisch, D.1    Kühbeck, B.2    Sick, B.3    Ovaska, S.J.4
  • 20
    • 84868111801 scopus 로고    scopus 로고
    • A new approximate maximal margin classification algorithm
    • C. Gentile A new approximate maximal margin classification algorithm Journal of Machine Learning Research 2 2001 213 242
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 213-242
    • Gentile, C.1
  • 24
    • 33745777639 scopus 로고    scopus 로고
    • Incremental support vector learning: Analysis, implementation and applications
    • P. Laskov, C. Gehl, S. Kruger, and K.R. Muller Incremental support vector learning: analysis, implementation and applications Machine Learning 7 2006 1909 1936
    • (2006) Machine Learning , vol.7 , pp. 1909-1936
    • Laskov, P.1    Gehl, C.2    Kruger, S.3    Muller, K.R.4
  • 26
    • 78049527784 scopus 로고    scopus 로고
    • A weighted Lq adaptive least squares support vector machine classifiers - Robust and sparse approximation
    • J.L. Liu, J.P. Li, W.X. Xu, and Y. Shi A weighted Lq adaptive least squares support vector machine classifiers - robust and sparse approximation Expert Systems with Applications 38 3 2010 2253 2259
    • (2010) Expert Systems with Applications , vol.38 , Issue.3 , pp. 2253-2259
    • Liu, J.L.1    Li, J.P.2    Xu, W.X.3    Shi, Y.4
  • 28
    • 77950917666 scopus 로고    scopus 로고
    • On-line evolving image classifiers and their application to surface inspection
    • E. Lughofer On-line evolving image classifiers and their application to surface inspection Image and Vision Computing 28 2010 1065 1079
    • (2010) Image and Vision Computing , vol.28 , pp. 1065-1079
    • Lughofer, E.1
  • 30
    • 84868477631 scopus 로고    scopus 로고
    • Unification of fuzzy SVMs and rule extraction methods through imprecise domain knowledge
    • L. Magdalena, M. Ojeda-Aciego, J.L. Verdegay, Unification of fuzzy SVMs and rule extraction methods through imprecise domain knowledge, in: Proceedings of IPMU'08, pp. 1527-1534.
    • Proceedings of IPMU'08 , pp. 1527-1534
    • Magdalena, L.1    Ojeda-Aciego, M.2    Verdegay, J.L.3
  • 31
    • 79960565310 scopus 로고    scopus 로고
    • Design of fuzzy rule-based classifiers with semantic cointension
    • C. Mencar, C. Castiello, R. Cannone, and A.M. Fanelli Design of fuzzy rule-based classifiers with semantic cointension Information Sciences 181 2011 4361 4377
    • (2011) Information Sciences , vol.181 , pp. 4361-4377
    • Mencar, C.1    Castiello, C.2    Cannone, R.3    Fanelli, A.M.4
  • 32
    • 84866871616 scopus 로고    scopus 로고
    • Structured output learning with polynomial kernel
    • Borovets, Bulgaria
    • H. Morita, H. Takamura, M. Okumura, Structured output learning with polynomial kernel, in: International Conference RANLP, Borovets, Bulgaria, 2009, pp. 281-286.
    • (2009) International Conference RANLP , pp. 281-286
    • Morita, H.1    Takamura, H.2    Okumura, M.3
  • 33
    • 14944343430 scopus 로고    scopus 로고
    • Multi-class support vector machines for protein secondary structure prediction
    • M.N. Nguyen, and J.C. Rajapakse Multi-class support vector machines for protein secondary structure prediction Genome Informatics 14 2003 218 227
    • (2003) Genome Informatics , vol.14 , pp. 218-227
    • Nguyen, M.N.1    Rajapakse, J.C.2
  • 35
    • 79952487670 scopus 로고    scopus 로고
    • Human centricity in computing with fuzzy sets: An interpretability quest for higher order granular constructs
    • W. Pedrycz Human centricity in computing with fuzzy sets: an interpretability quest for higher order granular constructs Journal of Ambient Intelligence and Humanized Computing 1 1 2010 65 74
    • (2010) Journal of Ambient Intelligence and Humanized Computing , vol.1 , Issue.1 , pp. 65-74
    • Pedrycz, W.1
  • 37
    • 80052921784 scopus 로고    scopus 로고
    • A parsimony fuzzy rule-based classifier using axiomatic fuzzy set theory and support vector machines
    • Y. Ren, X.D. Liu, and J.N. Cao A parsimony fuzzy rule-based classifier using axiomatic fuzzy set theory and support vector machines Information Sciences 181 2011 5180 5193
    • (2011) Information Sciences , vol.181 , pp. 5180-5193
    • Ren, Y.1    Liu, X.D.2    Cao, J.N.3
  • 38
    • 70350605478 scopus 로고    scopus 로고
    • Data-driven fuzzy modeling for Takagi-Sugeno-Kang fuzzy system
    • B. Rezaee, and M.H.F. Zarandi Data-driven fuzzy modeling for Takagi-Sugeno-Kang fuzzy system Information Sciences 180 2010 241 255
    • (2010) Information Sciences , vol.180 , pp. 241-255
    • Rezaee, B.1    Zarandi, M.H.F.2
  • 39
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • F. Rosenblatt The perceptron: a probabilistic model for information storage and organization in the brain Psychological Review 65 6 1958 386 408
    • (1958) Psychological Review , vol.65 , Issue.6 , pp. 386-408
    • Rosenblatt, F.1
  • 40
    • 77958453890 scopus 로고    scopus 로고
    • Improving the performance of fuzzy rule-based classification systems with interval-valued fuzzy sets and genetic amplitude tuning
    • J.A. Sanz, A. Fernández, H. Bustince, and F. Herrera Improving the performance of fuzzy rule-based classification systems with interval-valued fuzzy sets and genetic amplitude tuning Information Sciences 180 2010 3674 3685
    • (2010) Information Sciences , vol.180 , pp. 3674-3685
    • Sanz, J.A.1    Fernández, A.2    Bustince, H.3    Herrera, F.4
  • 41
    • 0036881508 scopus 로고    scopus 로고
    • Robust support vector machine with bullet hole image classification
    • Q. Song Robust support vector machine with bullet hole image classification IEEE Transaction on System, Man, and Cybernetics, Part C 32 4 2002 440 448
    • (2002) IEEE Transaction on System, Man, and Cybernetics, Part C , vol.32 , Issue.4 , pp. 440-448
    • Song, Q.1
  • 43
    • 78049360982 scopus 로고    scopus 로고
    • Feature extraction and optimization of representative-slice in ambiguity function for moving radar emitter recognition
    • Dallas, USA
    • L. Wang, H.B. Ji, Y. Shi, Feature extraction and optimization of representative-slice in ambiguity function for moving radar emitter recognition, in: 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), Dallas, USA, 2010, pp. 2246-2249.
    • (2010) 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP) , pp. 2246-2249
    • Wang, L.1    Ji, H.B.2    Shi, Y.3
  • 44
    • 30344453065 scopus 로고    scopus 로고
    • A new fuzzy support vector machine to evaluate credit risk
    • Y.Q. Wang, S.Y. Wang, and K.K. Lai A new fuzzy support vector machine to evaluate credit risk IEEE Transaction on Fuzzy Systems 13 6 2005 820 831
    • (2005) IEEE Transaction on Fuzzy Systems , vol.13 , Issue.6 , pp. 820-831
    • Wang, Y.Q.1    Wang, S.Y.2    Lai, K.K.3
  • 46
    • 77958150674 scopus 로고    scopus 로고
    • A dynamic classifier ensemble selection approach for noise data
    • J. Xiao, C.Z. He, X.Y. Jiang, and D.H. Liu A dynamic classifier ensemble selection approach for noise data Information Sciences 180 2010 3402 3421
    • (2010) Information Sciences , vol.180 , pp. 3402-3421
    • Xiao, J.1    He, C.Z.2    Jiang, X.Y.3    Liu, D.H.4
  • 47
    • 67650995440 scopus 로고    scopus 로고
    • Feature selection for multi-label naive Bayes classification
    • M.L. Zhang, J.M. Peña, and V. Robles Feature selection for multi-label naive Bayes classification Information Sciences 179 2009 3218 3229
    • (2009) Information Sciences , vol.179 , pp. 3218-3229
    • Zhang, M.L.1    Peña, J.M.2    Robles, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.