메뉴 건너뛰기




Volumn 180, Issue 2, 2010, Pages 241-255

Data-driven fuzzy modeling for Takagi-Sugeno-Kang fuzzy system

Author keywords

Fuzzy modeling; Fuzzy rule based models; Fuzzy system design; Structure and parameter identification; Tagaki Sugeno Kang models

Indexed keywords

FUZZY MODELING; FUZZY RULE-BASED MODELS; FUZZY SYSTEM DESIGN; STRUCTURE AND PARAMETER IDENTIFICATION; TAGAKI-SUGENO-KANG MODELS;

EID: 70350605478     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2009.08.021     Document Type: Article
Times cited : (125)

References (64)
  • 1
    • 0036791593 scopus 로고    scopus 로고
    • Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models
    • Abonyi J., and Babuska R. Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models. IEEE Trans. Syst. Man Cybernet. B 32 5 (2002) 612-621
    • (2002) IEEE Trans. Syst. Man Cybernet. B , vol.32 , Issue.5 , pp. 612-621
    • Abonyi, J.1    Babuska, R.2
  • 2
    • 1142279663 scopus 로고    scopus 로고
    • An approach for fuzzy rule-base adaptation using on-line clustering
    • Angelov P.P. An approach for fuzzy rule-base adaptation using on-line clustering. Int. J. Approx. Reason. 35 3 (2004) 275-289
    • (2004) Int. J. Approx. Reason. , vol.35 , Issue.3 , pp. 275-289
    • Angelov, P.P.1
  • 3
    • 0036802284 scopus 로고    scopus 로고
    • Identification of evolving fuzzy rule based models
    • Angelov P.P., and Buswell R. Identification of evolving fuzzy rule based models. IEEE Trans. Fuzzy Syst. 10 5 (2002) 667-677
    • (2002) IEEE Trans. Fuzzy Syst. , vol.10 , Issue.5 , pp. 667-677
    • Angelov, P.P.1    Buswell, R.2
  • 4
    • 0742272554 scopus 로고    scopus 로고
    • An approach to online identification of Takagi-Sugeno fuzzy models
    • Angelov P.P., and Filev D.P. An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Trans. Syst. Man Cybernet. B 34 1 (2004) 484-498
    • (2004) IEEE Trans. Syst. Man Cybernet. B , vol.34 , Issue.1 , pp. 484-498
    • Angelov, P.P.1    Filev, D.P.2
  • 8
    • 0000810783 scopus 로고    scopus 로고
    • Fuzzy clustering analysis for optimizing fuzzy membership functions
    • Chen M.-S., and Wang S.-W. Fuzzy clustering analysis for optimizing fuzzy membership functions. Fuzzy Set Syst. 103 2 (1999) 239-254
    • (1999) Fuzzy Set Syst. , vol.103 , Issue.2 , pp. 239-254
    • Chen, M.-S.1    Wang, S.-W.2
  • 9
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • Chiu S.L. Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 2 (1994) 267-278
    • (1994) J. Intell. Fuzzy Syst. , vol.2 , pp. 267-278
    • Chiu, S.L.1
  • 10
    • 50149097761 scopus 로고    scopus 로고
    • Identification of fuzzy models using a successive tuning method with a variant identification ratio
    • 10.1016/j.fss.2007.12.031
    • Choi J.N., Oh S.K., and Pedrycz W. Identification of fuzzy models using a successive tuning method with a variant identification ratio. Fuzzy Set Syst. (2008) 10.1016/j.fss.2007.12.031
    • (2008) Fuzzy Set Syst.
    • Choi, J.N.1    Oh, S.K.2    Pedrycz, W.3
  • 12
    • 0035696162 scopus 로고    scopus 로고
    • Robust TSK fuzzy modeling for function approximation with outliers
    • Chuang C.C., Su S.F., and Chen S.S. Robust TSK fuzzy modeling for function approximation with outliers. IEEE Trans. Fuzzy Syst. 9 (2001) 810-821
    • (2001) IEEE Trans. Fuzzy Syst. , vol.9 , pp. 810-821
    • Chuang, C.C.1    Su, S.F.2    Chen, S.S.3
  • 13
    • 0035426308 scopus 로고    scopus 로고
    • Agenetic learning process for the scaling factors, granularity and contexts of the fuzzy rule-based system data base
    • Cordon O., Herrera F., Magdalena L., and Villar P. Agenetic learning process for the scaling factors, granularity and contexts of the fuzzy rule-based system data base. Inform. Sci. 136 (2001) 85-107
    • (2001) Inform. Sci. , vol.136 , pp. 85-107
    • Cordon, O.1    Herrera, F.2    Magdalena, L.3    Villar, P.4
  • 14
    • 0032674647 scopus 로고    scopus 로고
    • Solving electrical distribution problems using hybrid evolutionary data analysis techniques
    • Cordon O., Herrera F., and Sanchez L. Solving electrical distribution problems using hybrid evolutionary data analysis techniques. Appl. Intell. 10 (1999) 5-24
    • (1999) Appl. Intell. , vol.10 , pp. 5-24
    • Cordon, O.1    Herrera, F.2    Sanchez, L.3
  • 15
    • 0035415952 scopus 로고    scopus 로고
    • Generating the knowledge base of a fuzzy rule-based system by the genetic learning of the data base
    • Cordón O., Herrera F., and Villar P. Generating the knowledge base of a fuzzy rule-based system by the genetic learning of the data base. IEEE Trans. Fuzzy Syst. 9 4 (2001) 667-674
    • (2001) IEEE Trans. Fuzzy Syst. , vol.9 , Issue.4 , pp. 667-674
    • Cordón, O.1    Herrera, F.2    Villar, P.3
  • 16
    • 0036475811 scopus 로고    scopus 로고
    • Linguistic modeling by hierarchical systems of linguistic rules
    • Cordon O., Herrera F., and Zwir I. Linguistic modeling by hierarchical systems of linguistic rules. IEEE Trans. Fuzzy Syst. 10 (2002) 2-20
    • (2002) IEEE Trans. Fuzzy Syst. , vol.10 , pp. 2-20
    • Cordon, O.1    Herrera, F.2    Zwir, I.3
  • 17
    • 34548482727 scopus 로고    scopus 로고
    • Application of evolving Takagi-Sugeno fuzzy model to nonlinear system identification
    • Du H., and Zhang N. Application of evolving Takagi-Sugeno fuzzy model to nonlinear system identification. Appl. Soft Comput. 8 (2008) 676-686
    • (2008) Appl. Soft Comput. , vol.8 , pp. 676-686
    • Du, H.1    Zhang, N.2
  • 18
    • 0036888603 scopus 로고    scopus 로고
    • Structure identification and parameter optimization for non-linear fuzzy modeling
    • Evsukoff A., Branco C.S., and Galichet S. Structure identification and parameter optimization for non-linear fuzzy modeling. Fuzzy Set Syst. 132 (2002) 173-188
    • (2002) Fuzzy Set Syst. , vol.132 , pp. 173-188
    • Evsukoff, A.1    Branco, C.S.2    Galichet, S.3
  • 19
    • 0001948145 scopus 로고
    • Fast learning with incremental RBF networks
    • Fritzke B. Fast learning with incremental RBF networks. Neural Process. Lett. 2 1 (1994) 2-5
    • (1994) Neural Process. Lett. , vol.2 , Issue.1 , pp. 2-5
    • Fritzke, B.1
  • 21
    • 0037331913 scopus 로고    scopus 로고
    • Data-driven linguistic modeling using relational fuzzy rules
    • Gaweda A.E., and Zurada J.M. Data-driven linguistic modeling using relational fuzzy rules. IEEE Trans. Fuzzy Syst. 11 1 (2003) 121-134
    • (2003) IEEE Trans. Fuzzy Syst. , vol.11 , Issue.1 , pp. 121-134
    • Gaweda, A.E.1    Zurada, J.M.2
  • 22
    • 50149096917 scopus 로고    scopus 로고
    • Genetic fuzzy systems: taxonomy, current research trends and prospects
    • Herrera F. Genetic fuzzy systems: taxonomy, current research trends and prospects. Evol. Intell. 1 (2008) 27-46
    • (2008) Evol. Intell. , vol.1 , pp. 27-46
    • Herrera, F.1
  • 23
    • 0035426538 scopus 로고    scopus 로고
    • Genetic programming for model selection of TSK-fuzzy systems
    • Hoffmann F., and Nelles O. Genetic programming for model selection of TSK-fuzzy systems. Inform. Sci. 136 (2001) 7-28
    • (2001) Inform. Sci. , vol.136 , pp. 7-28
    • Hoffmann, F.1    Nelles, O.2
  • 24
    • 0037308031 scopus 로고    scopus 로고
    • Improved fuzzy partitions for fuzzy regression models
    • Höppner F., and Klawonn F. Improved fuzzy partitions for fuzzy regression models. Int. J. Approx. Reason. 32 (2003) 85-102
    • (2003) Int. J. Approx. Reason. , vol.32 , pp. 85-102
    • Höppner, F.1    Klawonn, F.2
  • 25
    • 0346781550 scopus 로고    scopus 로고
    • Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining
    • Ishibuchi H., and Yamamoto T. Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining. Fuzzy Set Syst. 141 1 (2004) 59-88
    • (2004) Fuzzy Set Syst. , vol.141 , Issue.1 , pp. 59-88
    • Ishibuchi, H.1    Yamamoto, T.2
  • 26
    • 33751186914 scopus 로고    scopus 로고
    • Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning
    • Ishibuchi H., and Nojima Y. Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning. Int. J. Approx. Reason. 44 1 (2007) 4-31
    • (2007) Int. J. Approx. Reason. , vol.44 , Issue.1 , pp. 4-31
    • Ishibuchi, H.1    Nojima, Y.2
  • 27
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference systems
    • Jang J.-S.R. ANFIS: adaptive-network-based fuzzy inference systems. IEEE Trans. Syst. Man Cybernet. 23 3 (1993) 665-685
    • (1993) IEEE Trans. Syst. Man Cybernet. , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.-S.R.1
  • 29
    • 0033704546 scopus 로고    scopus 로고
    • Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement
    • Jin Y. Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement. IEEE Trans. Fuzzy Syst. 8 2 (2000) 212-221
    • (2000) IEEE Trans. Fuzzy Syst. , vol.8 , Issue.2 , pp. 212-221
    • Jin, Y.1
  • 30
    • 34548604303 scopus 로고    scopus 로고
    • Comparison of different strategies of utilizing fuzzy clustering in structure identification
    • Kilic K., Uncu O., and Turksen I.B. Comparison of different strategies of utilizing fuzzy clustering in structure identification. Inform. Sci. 177 23 (2007) 5153-5162
    • (2007) Inform. Sci. , vol.177 , Issue.23 , pp. 5153-5162
    • Kilic, K.1    Uncu, O.2    Turksen, I.B.3
  • 31
    • 4544306325 scopus 로고    scopus 로고
    • Building a fuzzy model with transparent membership functions through constrained evolutionary optimization
    • Kim M.-S., Kim C.-H., and Lee J.-J. Building a fuzzy model with transparent membership functions through constrained evolutionary optimization. Int. J. Control Autom. Syst. 2 3 (2004) 298-309
    • (2004) Int. J. Control Autom. Syst. , vol.2 , Issue.3 , pp. 298-309
    • Kim, M.-S.1    Kim, C.-H.2    Lee, J.-J.3
  • 32
    • 33749382626 scopus 로고    scopus 로고
    • Evolving compact and interpretable Takagi-Sugeno fuzzy models with a new encoding scheme
    • Kim M.-S., Kim C.-H., and Lee J.J. Evolving compact and interpretable Takagi-Sugeno fuzzy models with a new encoding scheme. IEEE Trans. Syst. Man Cybernet. B: Cybernet. 36 5 (2006) 1006-1023
    • (2006) IEEE Trans. Syst. Man Cybernet. B: Cybernet. , vol.36 , Issue.5 , pp. 1006-1023
    • Kim, M.-S.1    Kim, C.-H.2    Lee, J.J.3
  • 33
    • 0032164985 scopus 로고    scopus 로고
    • A simply identified Sugeno-type fuzzy model via double clustering
    • Kim E., Lee H., Park M., and Park M. A simply identified Sugeno-type fuzzy model via double clustering. Inform. Sci. 110 (1998) 25-39
    • (1998) Inform. Sci. , vol.110 , pp. 25-39
    • Kim, E.1    Lee, H.2    Park, M.3    Park, M.4
  • 35
    • 0032203243 scopus 로고    scopus 로고
    • A transformed input-domain approach to fuzzy modeling
    • Kim E., Park M., Kim S., and Park M. A transformed input-domain approach to fuzzy modeling. IEEE Trans. Fuzzy Syst. 6 (1998) 596-604
    • (1998) IEEE Trans. Fuzzy Syst. , vol.6 , pp. 596-604
    • Kim, E.1    Park, M.2    Kim, S.3    Park, M.4
  • 37
    • 0037525534 scopus 로고    scopus 로고
    • A neurofuzzy system modeling with self-constructing rule generation and hybrid SVD-based learning
    • Lee S.-J., and Ouyang C.-S. A neurofuzzy system modeling with self-constructing rule generation and hybrid SVD-based learning. IEEE Trans. Fuzzy Syst. 11 (2003) 341-353
    • (2003) IEEE Trans. Fuzzy Syst. , vol.11 , pp. 341-353
    • Lee, S.-J.1    Ouyang, C.-S.2
  • 38
    • 0141919673 scopus 로고    scopus 로고
    • On-line heart beat recognition using hermite polynomials and neuro-fuzzy network
    • Linh T.H., Osowski S., and Stodolski M. On-line heart beat recognition using hermite polynomials and neuro-fuzzy network. IEEE Trans. Instrum. Meas. 52 (2003) 1224-1231
    • (2003) IEEE Trans. Instrum. Meas. , vol.52 , pp. 1224-1231
    • Linh, T.H.1    Osowski, S.2    Stodolski, M.3
  • 39
    • 0034187785 scopus 로고    scopus 로고
    • Neuro-fuzzy rule generation: survey in softcomputing framework
    • Mitra S., and Hayashi Y. Neuro-fuzzy rule generation: survey in softcomputing framework. IEEE Trans. Neural Network 11 3 (2000) 748-768
    • (2000) IEEE Trans. Neural Network , vol.11 , Issue.3 , pp. 748-768
    • Mitra, S.1    Hayashi, Y.2
  • 40
    • 0034300570 scopus 로고    scopus 로고
    • Identification of fuzzy systems by means of an auto-tuning algorithm and its application to nonlinear systems
    • Oh S.K., and Pedrycz W. Identification of fuzzy systems by means of an auto-tuning algorithm and its application to nonlinear systems. Fuzzy Set Syst. 115 2 (2000) 205-230
    • (2000) Fuzzy Set Syst. , vol.115 , Issue.2 , pp. 205-230
    • Oh, S.K.1    Pedrycz, W.2
  • 41
    • 36048987710 scopus 로고    scopus 로고
    • Structural developments of fuzzy systems with the aim of information granulation
    • Oh S.K., Pedrycz W., and Park K.J. Structural developments of fuzzy systems with the aim of information granulation. Simul. Model. Pract. Theor. 15 (2007) 1292-1309
    • (2007) Simul. Model. Pract. Theor. , vol.15 , pp. 1292-1309
    • Oh, S.K.1    Pedrycz, W.2    Park, K.J.3
  • 43
    • 0036684586 scopus 로고    scopus 로고
    • A new scheme for fuzzy rule-based system identification and its application to self-tuning fuzzy controllers
    • Pal K., Mudi R.K., and Pal N.R. A new scheme for fuzzy rule-based system identification and its application to self-tuning fuzzy controllers. IEEE Trans. Syst. Man Cybernet. B 32 4 (2002) 470-482
    • (2002) IEEE Trans. Syst. Man Cybernet. B , vol.32 , Issue.4 , pp. 470-482
    • Pal, K.1    Mudi, R.K.2    Pal, N.R.3
  • 44
    • 0035467258 scopus 로고    scopus 로고
    • Identification of fuzzy models with the aid of evolutionary data granulation
    • Park B.J., Pedrycz W., and Oh S.K. Identification of fuzzy models with the aid of evolutionary data granulation. IEE Proc. Contr. Theor. Appl. 148 5 (2001) 406-418
    • (2001) IEE Proc. Contr. Theor. Appl. , vol.148 , Issue.5 , pp. 406-418
    • Park, B.J.1    Pedrycz, W.2    Oh, S.K.3
  • 45
    • 0021455631 scopus 로고
    • An identification algorithm in fuzzy relational system
    • Pedrycz W. An identification algorithm in fuzzy relational system. Fuzzy Set Syst. 13 2 (1984) 153-167
    • (1984) Fuzzy Set Syst. , vol.13 , Issue.2 , pp. 153-167
    • Pedrycz, W.1
  • 46
    • 33645070541 scopus 로고    scopus 로고
    • Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction
    • Rong H.J., Sundararajan N., Huang G.B., and Saratchandran P. Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction. Fuzzy Set Syst. 157 (2006) 1260-1275
    • (2006) Fuzzy Set Syst. , vol.157 , pp. 1260-1275
    • Rong, H.J.1    Sundararajan, N.2    Huang, G.B.3    Saratchandran, P.4
  • 47
    • 0035415950 scopus 로고    scopus 로고
    • Compact and transparent fuzzy models and classifiers through iterative complexity reduction
    • Roubos H., and Setnes M. Compact and transparent fuzzy models and classifiers through iterative complexity reduction. IEEE Trans. Fuzzy Syst. 9 4 (2001) 516-524
    • (2001) IEEE Trans. Fuzzy Syst. , vol.9 , Issue.4 , pp. 516-524
    • Roubos, H.1    Setnes, M.2
  • 48
    • 0034294243 scopus 로고    scopus 로고
    • GA-fuzzy modeling and classification: complexity and performance
    • Setnes M., and Roubos H. GA-fuzzy modeling and classification: complexity and performance. IEEE Trans. Fuzzy Syst. 8 5 (2000) 509-522
    • (2000) IEEE Trans. Fuzzy Syst. , vol.8 , Issue.5 , pp. 509-522
    • Setnes, M.1    Roubos, H.2
  • 49
    • 0033114942 scopus 로고    scopus 로고
    • Implementation of evolutionary fuzzy systems
    • Shi Y., Eberhart R., and Chen Y. Implementation of evolutionary fuzzy systems. IEEE Trans. Fuzzy Syst. 7 2 (1999) 109-119
    • (1999) IEEE Trans. Fuzzy Syst. , vol.7 , Issue.2 , pp. 109-119
    • Shi, Y.1    Eberhart, R.2    Chen, Y.3
  • 50
    • 0029296855 scopus 로고
    • Self-tuning fuzzy modeling with adaptive membership function, rules, and hierarchical structure based on genetic algorithm
    • Shimojima K., Fukuda T., and Hasegawa Y. Self-tuning fuzzy modeling with adaptive membership function, rules, and hierarchical structure based on genetic algorithm. Fuzzy Set Syst. 71 (1995) 295-309
    • (1995) Fuzzy Set Syst. , vol.71 , pp. 295-309
    • Shimojima, K.1    Fukuda, T.2    Hasegawa, Y.3
  • 51
    • 0000185305 scopus 로고
    • Successive identification of a fuzzy model and its application to prediction of a complex system
    • Sugeno M., and Tanaka K. Successive identification of a fuzzy model and its application to prediction of a complex system. Fuzzy Set Syst. 42 (1991) 315-334
    • (1991) Fuzzy Set Syst. , vol.42 , pp. 315-334
    • Sugeno, M.1    Tanaka, K.2
  • 52
    • 0002354761 scopus 로고
    • Linguistic modeling based on numerical data
    • Computer, Management and System Science
    • Sugeno M., and Yasukawa T. Linguistic modeling based on numerical data. IFSA'91 Brussels (1991), Computer, Management and System Science 264-267
    • (1991) IFSA'91 Brussels , pp. 264-267
    • Sugeno, M.1    Yasukawa, T.2
  • 53
    • 0027544110 scopus 로고
    • A fuzzy logic based approach to qualitative modeling
    • Sugeno M., and Yasukawa M. A fuzzy logic based approach to qualitative modeling. IEEE Trans. Fuzzy Syst. 1 (1993) 7-31
    • (1993) IEEE Trans. Fuzzy Syst. , vol.1 , pp. 7-31
    • Sugeno, M.1    Yasukawa, M.2
  • 54
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi T., and Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybernet. 15 1 (1985) 116-132
    • (1985) IEEE Trans. Syst. Man Cybernet. , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 55
    • 84972812688 scopus 로고
    • Synthesis of fuzzy models for industrial processes
    • Tong R.M. Synthesis of fuzzy models for industrial processes. Int. J. Gen. Syst. 4 (1978) 143-162
    • (1978) Int. J. Gen. Syst. , vol.4 , pp. 143-162
    • Tong, R.M.1
  • 56
    • 14644443622 scopus 로고    scopus 로고
    • On the use of the weighted fuzzy c-means in fuzzy modeling
    • Tsekouras G.E. On the use of the weighted fuzzy c-means in fuzzy modeling. Adv. Eng. Softw. 36 (2005) 287-300
    • (2005) Adv. Eng. Softw. , vol.36 , pp. 287-300
    • Tsekouras, G.E.1
  • 57
    • 11244351633 scopus 로고    scopus 로고
    • A hierarchical fuzzy-clustering approach to fuzzy modeling
    • Tsekouras G.E., Sarimveis H., Kavakli E., and Bafas G. A hierarchical fuzzy-clustering approach to fuzzy modeling. Fuzzy Set Syst. 150 (2005) 245-267
    • (2005) Fuzzy Set Syst. , vol.150 , pp. 245-267
    • Tsekouras, G.E.1    Sarimveis, H.2    Kavakli, E.3    Bafas, G.4
  • 58
    • 33947365579 scopus 로고    scopus 로고
    • Discrete interval type 2 fuzzy system models using uncertainty in learning parameters
    • Uncu O., and Türksen I.B. Discrete interval type 2 fuzzy system models using uncertainty in learning parameters. IEEE Trans. Fuzzy Syst. 15 1 (2007) 90-106
    • (2007) IEEE Trans. Fuzzy Syst. , vol.15 , Issue.1 , pp. 90-106
    • Uncu, O.1    Türksen, I.B.2
  • 59
    • 9644257194 scopus 로고    scopus 로고
    • Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction
    • Wang H.L., Kwong S., Jin Y.C., Wei W., and Man K.F. Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction. Fuzzy Set Syst. 149 1 (2005) 149-186
    • (2005) Fuzzy Set Syst. , vol.149 , Issue.1 , pp. 149-186
    • Wang, H.L.1    Kwong, S.2    Jin, Y.C.3    Wei, W.4    Man, K.F.5
  • 61
    • 0029406441 scopus 로고
    • Building Sugeno-type models using fuzzy discretization and orthogonal parameter estimation techniques
    • Wang L., and Langari R. Building Sugeno-type models using fuzzy discretization and orthogonal parameter estimation techniques. IEEE Trans. Fuzzy Syst. 3 (1995) 454-458
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , pp. 454-458
    • Wang, L.1    Langari, R.2
  • 62
    • 34248666540 scopus 로고
    • Fuzzy sets
    • Zadeh L.A. Fuzzy sets. Inform. Contr. 8 (1965) 338-353
    • (1965) Inform. Contr. , vol.8 , pp. 338-353
    • Zadeh, L.A.1
  • 63
    • 18144388681 scopus 로고    scopus 로고
    • Toward a generalized theory of uncertainty (GTU) - an outline
    • Zadeh L.A. Toward a generalized theory of uncertainty (GTU) - an outline. Inform. Sci. 172 (2005) 1-40
    • (2005) Inform. Sci. , vol.172 , pp. 1-40
    • Zadeh, L.A.1
  • 64
    • 42749097020 scopus 로고    scopus 로고
    • Is there a need for fuzzy logic?
    • Zadeh L.A. Is there a need for fuzzy logic?. Inform. Sci. 178 (2008) 2751-2779
    • (2008) Inform. Sci. , vol.178 , pp. 2751-2779
    • Zadeh, L.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.