메뉴 건너뛰기




Volumn 11, Issue 2, 2007, Pages 193-207

Towards incremental fuzzy classifiers

Author keywords

Classification; Incremental and supervised clustering; Incremental feature selection; Incremental fuzzy rule learning

Indexed keywords


EID: 33748339019     PISSN: 14327643     EISSN: 14337479     Source Type: Journal    
DOI: 10.1007/s00500-006-0077-3     Document Type: Article
Times cited : (41)

References (33)
  • 1
    • 0041339769 scopus 로고    scopus 로고
    • Supervised fuzzy clustering for the identification of fuzzy classifiers
    • Abonyi J, Szeifert F (2003) Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recognit Lett 24(14):2195-2207
    • (2003) Pattern Recognit Lett , vol.24 , Issue.14 , pp. 2195-2207
    • Abonyi, J.1    Szeifert, F.2
  • 2
    • 0032208398 scopus 로고    scopus 로고
    • Rough fuzy MLP: Knowledge encoding and classificationn
    • Banerjee M, Mitra S, Pal S (1998) Rough fuzy MLP: Knowledge encoding and classificationn. IEEE Trans Neural Netw 9:1203-1216
    • (1998) IEEE Trans Neural Netw , vol.9 , pp. 1203-1216
    • Banerjee, M.1    Mitra, S.2    Pal, S.3
  • 3
    • 0002973811 scopus 로고    scopus 로고
    • Fuzzy IF-THEN rules in computational intelligence: Theory and applications
    • Kluwer, Dordrecht
    • Baranyi P, Yam Y (2000) Fuzzy IF-THEN rules in computational intelligence: Theory and applications. Fuzzy rule base reduction, Kluwer, Dordrecht, pp 135-160
    • (2000) Fuzzy Rule Base Reduction , pp. 135-160
    • Baranyi, P.1    Yam, Y.2
  • 6
    • 33748343233 scopus 로고    scopus 로고
    • Maintaining knowledge bases via incremental rule learning
    • (Located at the 27th German Conference on Artifial Intelligence) Ulm, Germany
    • Bouchachia A (2004) Maintaining knowledge bases via incremental rule learning. In: Proceedings of the Inter. Workshop on soft computing for information mining (Located at the 27th German Conference on artifial intelligence), Ulm, Germany pp 51-63
    • (2004) Proceedings of the Inter. Workshop on Soft Computing for Information Mining , pp. 51-63
    • Bouchachia, A.1
  • 7
    • 33748345200 scopus 로고    scopus 로고
    • Architectures for intelligence, chapter Learning in open-ended environments: Distributed learning and incremental learning
    • Springer, Berlin Heiddberg New York
    • Caragea D et al (2001) Architectures for intelligence, chapter Learning in open-ended environments: Distributed learning and incremental learning. Springer, Berlin Heiddberg New York
    • (2001)
    • Caragea, D.1
  • 8
    • 0026408256 scopus 로고
    • Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system
    • 1991
    • Carpenter G, Grossberg S, Rosen D (1991) Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Netw 4(6):759-771, 1991
    • (1991) Neural Netw , vol.4 , Issue.6 , pp. 759-771
    • Carpenter, G.1    Grossberg, S.2    Rosen, D.3
  • 9
    • 0035904595 scopus 로고    scopus 로고
    • Predictive learning models for concept drift
    • Case J, Jain S, Kaufmann S, Sharma A (2001) Predictive learning models for concept drift. Theor Comput Sci 268(2):323-349
    • (2001) Theor Comput Sci , vol.268 , Issue.2 , pp. 323-349
    • Case, J.1    Jain, S.2    Kaufmann, S.3    Sharma, A.4
  • 11
    • 3442893567 scopus 로고    scopus 로고
    • Evolutionary design of a fuzzy classifier from data
    • Chang X, Lilly J (2004) Evolutionary design of a fuzzy classifier from data. Pattern Recognit Lett 34(4):1894-1906
    • (2004) Pattern Recognit Lett , vol.34 , Issue.4 , pp. 1894-1906
    • Chang, X.1    Lilly, J.2
  • 12
    • 0742320762 scopus 로고    scopus 로고
    • Rule-based self-generation and Simplification for Data-driven fuzzy Models
    • Chen M, Linkens D (2004) Rule-based self-generation and Simplification for Data-driven fuzzy Models. Fuzzy Sets Syst 142: 243-265
    • (2004) Fuzzy Sets Syst , vol.142 , pp. 243-265
    • Chen, M.1    Linkens, D.2
  • 13
    • 0031245693 scopus 로고    scopus 로고
    • Feature analysis: Neural network and fuzzy set theoretic approaches
    • De R, Pal N, Pal S (1997) Feature analysis: Neural network and fuzzy set theoretic approaches. Pattern Recognit 30(10):1579-1590
    • (1997) Pattern Recognit , vol.30 , Issue.10 , pp. 1579-1590
    • De, R.1    Pal, N.2    Pal, S.3
  • 14
    • 0003922190 scopus 로고    scopus 로고
    • Pattern classification
    • Wiley, New York
    • Duda P, Hart E, Stork D(2001) Pattern classification. Wiley, New York
    • (2001)
    • Duda, P.1    Hart, E.2    Stork, D.3
  • 15
    • 0030141870 scopus 로고    scopus 로고
    • Incremental backpropagation learning networks
    • Fu L, Hsu H, Principe J (1996) Incremental backpropagation learning networks. IEEE Trans Neural Net 7:757-762
    • (1996) IEEE Trans Neural Net , vol.7 , pp. 757-762
    • Fu, L.1    Hsu, H.2    Principe, J.3
  • 16
    • 0034499376 scopus 로고    scopus 로고
    • A note on the utility of incremental learning
    • Giraud-Carrier C (2000) A note on the utility of incremental learning. AI Commun 13(4):215-223
    • (2000) AI Commun , vol.13 , Issue.4 , pp. 215-223
    • Giraud-Carrier, C.1
  • 17
    • 0001546764 scopus 로고    scopus 로고
    • Convergent on-line algorithms for supervised learning in neural networks
    • Grippo L (2000) Convergent on-line algorithms for supervised learning in neural networks. IEEE Trans Neural Netw 11: 1284-1299
    • (2000) IEEE Trans Neural Netw , vol.11 , pp. 1284-1299
    • Grippo, L.1
  • 19
    • 0032597810 scopus 로고    scopus 로고
    • Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems
    • Ishibuchi H, Nakashima T, Murata T (1999) Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems. IEEE Trans SMC-B, 29:601-618
    • (1999) IEEE Trans SMC-B , vol.29 , pp. 601-618
    • Ishibuchi, H.1    Nakashima, T.2    Murata, T.3
  • 22
    • 0031075592 scopus 로고    scopus 로고
    • Size reduction by interpolation in fuzzy rule bases
    • Kóczy L, Hirota K (1997) Size reduction by interpolation in fuzzy rule bases. IEEE Trans SMC 27:14-25
    • (1997) IEEE Trans SMC , vol.27 , pp. 14-25
    • Kóczy, L.1    Hirota, K.2
  • 23
    • 0141592441 scopus 로고    scopus 로고
    • Incremental rule learning with partial instance memory for changing concepts
    • Los Alamitos, USA
    • Maloof M (2003) Incremental rule learning with partial instance memory for changing concepts. In: Proceedings of the international joint conference on neural networks, Los Alamitos, USA pp 2764-2769
    • (2003) Proceedings of the International Joint Conference on Neural Networks , pp. 2764-2769
    • Maloof, M.1
  • 27
    • 0003909358 scopus 로고    scopus 로고
    • Foundations of neuro-fuzzy systems
    • Wiley, Chichester
    • Nauck D, Klawonn F, Kruse R (1997) Foundations of neuro-fuzzy systems. Wiley, Chichester
    • (1997)
    • Nauck, D.1    Klawonn, F.2    Kruse, R.3
  • 28
    • 0032960792 scopus 로고    scopus 로고
    • Obtaining interpretable fuzzy classification rules from medical data
    • Nauck D, Kruse R (1999) Obtaining interpretable fuzzy classification rules from medical data. Artif Intell Medi 16:149-169
    • (1999) Artif Intell Medi , vol.16 , pp. 149-169
    • Nauck, D.1    Kruse, R.2
  • 30
    • 0035521110 scopus 로고    scopus 로고
    • Learn++: An incremental learning algorithm for supervised neural networks
    • Polikar R, Udpa L, Udpa S, Honavar V (2000) Learn++: An incremental learning algorithm for supervised neural networks. IEEE Trans Systems Man Cybern 31(4):497-508
    • (2000) IEEE Trans Systems Man Cybern , vol.31 , Issue.4 , pp. 497-508
    • Polikar, R.1    Udpa, L.2    Udpa, S.3    Honavar, V.4
  • 31
    • 0003500248 scopus 로고
    • Programs for machine learning
    • C4.5 Morgan Kaufmann San Fransisco
    • Quinlan J, C4.5 (1993): Programs for machine learning. Morgan Kaufmann San Fransisco
    • (1993)
    • Quinlan, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.