메뉴 건너뛰기




Volumn 37, Issue 3, 2012, Pages 390-404

Data stream classification with artificial endocrine system

Author keywords

Artificial endocrine system (AES); Data stream; Hormone; Nearest neighbor classification

Indexed keywords

CLASSIFICATION ACCURACY; CLASSIFICATION APPROACH; CLASSIFICATION ERRORS; CONCEPT DRIFTS; DATA STREAM; DATA STREAM MINING; ENDOCRINE CELLS; ENDOCRINE SYSTEMS; ENSEMBLE CLASSIFIERS; FEATURE SPACE; HARDWARE RESOURCES; MAIN MEMORY; MEMORY SPACE; NEAREST NEIGHBOR CLASSIFICATION; REAL LIFE DATASETS; SAMPLE BUFFER;

EID: 84868339525     PISSN: 0924669X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10489-011-0334-8     Document Type: Article
Times cited : (17)

References (40)
  • 1
    • 79955500697 scopus 로고    scopus 로고
    • Classification and novel class detection in concept-drifting data streams under time constraints
    • Masud MM, Gao J, Khan L, Han J, Thuraisingham B (2011) Classification and novel class detection in concept-drifting data streams under time constraints. IEEE Trans Knowl Data Eng 23(6):859-874
    • (2011) IEEE Trans Knowl Data Eng , vol.23 , Issue.6 , pp. 859-874
    • Masud, M.M.1    Gao, J.2    Khan, L.3    Han, J.4    Thuraisingham, B.5
  • 4
    • 80052970383 scopus 로고    scopus 로고
    • Rough sets for adapting wavelet neural networks as a new classifier system
    • Hassan YF (2010) Rough sets for adapting wavelet neural networks as a new classifier system. Appl Intell 35(2):260-268
    • (2010) Appl Intell , vol.35 , Issue.2 , pp. 260-268
    • Hassan, Y.F.1
  • 5
    • 33750687888 scopus 로고    scopus 로고
    • A classification method using a hybrid genetic algorithm combined with an adaptive procedure for the pool of ellipsoids
    • Lee KK, Yoon WC, Baek DH (2006) A classification method using a hybrid genetic algorithm combined with an adaptive procedure for the pool of ellipsoids. Appl Intell 25(3):293-304
    • (2006) Appl Intell , vol.25 , Issue.3 , pp. 293-304
    • Lee, K.K.1    Yoon, W.C.2    Baek, D.H.3
  • 6
    • 79953830578 scopus 로고    scopus 로고
    • Building a highly-compact and accurate associative classifier
    • Zhang X, Chen G, Wei Q (2011) Building a highly-compact and accurate associative classifier. Appl Intell 34(1):74-86
    • (2011) Appl Intell , vol.34 , Issue.1 , pp. 74-86
    • Zhang, X.1    Chen, G.2    Wei, Q.3
  • 7
    • 33645657061 scopus 로고    scopus 로고
    • A framework for ondemand classification of evolving data streams
    • Aggarwal CC, Han J, Wang J, Yu PS (2006) A framework for ondemand classification of evolving data streams. IEEE Trans Knowl Data Eng 18(5):577-589
    • (2006) IEEE Trans Knowl Data Eng , vol.18 , Issue.5 , pp. 577-589
    • Aggarwal, C.C.1    Han, J.2    Wang, J.3    Yu, P.S.4
  • 8
    • 42149193745 scopus 로고    scopus 로고
    • An efficient and sensitive decision tree approach to mining concept-drifting data streams
    • Tsai CJ, Lee CI, Yang WP (2008) An efficient and sensitive decision tree approach to mining concept-drifting data streams. Informatica 19(1):135-156
    • (2008) Informatica , vol.19 , Issue.1 , pp. 135-156
    • Tsai, C.J.1    Lee, C.I.2    Yang, W.P.3
  • 10
    • 34547994696 scopus 로고    scopus 로고
    • A low-granularity classifier for data streams with concept drifts and biased class distributio
    • Wang P,Wang H,Wu X,WangW, Shi B (2007) A low-granularity classifier for data streams with concept drifts and biased class distributio. IEEE Trans Knowl Data Eng 19(9):1202-1213
    • (2007) IEEE Trans Knowl Data Eng , vol.19 , Issue.9 , pp. 1202-1213
    • Pwang Hwu Xwangw, W.1    Shi, B.2
  • 11
    • 0034592938 scopus 로고    scopus 로고
    • Mining high-speed data streams. In: Proc sixth
    • Domingos P, Hulten G (2000) Mining high-speed data streams. In: Proc sixth ACM SIGKDD, pp 71-80
    • (2000) ACM SIGKDD , pp. 71-80
    • Domingos, P.1    Hulten, G.2
  • 12
    • 0035789299 scopus 로고    scopus 로고
    • Mining time-changing data streams
    • SIGKDD int'l conf knowledge discovery and data mining (KDD'01)
    • Hulten G, Spencer L, Domingos P (2001) Mining time-changing data streams. In: Proc seventh ACM SIGKDD int'l conf knowledge discovery and data mining (KDD'01), pp 97-106
    • (2001) Proc Seventh ACM , pp. 97-106
    • Hulten, G.1    Spencer, L.2    Domingos, P.3
  • 14
    • 0021471846 scopus 로고
    • Autonomous decentralized computer control systems
    • Ihara H, Mori K (1984) Autonomous decentralized computer control systems. Computer 17:57-66
    • (1984) Computer , vol.17 , pp. 57-66
    • Ihara, H.1    Mori, K.2
  • 15
    • 0021451637 scopus 로고
    • Autonomous decentralized control and its application to the rapid transit system
    • Miyamoto S, Mori K, Ihara H (1984) Autonomous decentralized control and its application to the rapid transit system. Comput Ind 5:115-124
    • (1984) Comput Ind , vol.5 , pp. 115-124
    • Miyamoto, S.1    Mori, K.2    Ihara, H.3
  • 16
    • 3042627420 scopus 로고    scopus 로고
    • Hormone-inspired self-organization and distributed control of robotic swarms
    • Shen WM, Will P, Galstyan A et al (2004) Hormone-inspired self-organization and distributed control of robotic swarms. Auton Robots 17:93-105
    • (2004) Auton Robots , vol.17 , pp. 93-105
    • Shen, W.M.1    Will, P.2    Galstyan, A.3
  • 17
    • 84858834499 scopus 로고    scopus 로고
    • Hormonal modulation of perception in motivation-based action selection architectures
    • New York
    • Avila-Garcia O, Canamero L (2005) Hormonal modulation of perception in motivation-based action selection architectures. In: The AISB'05 symposium. SSAISB Press, New York, pp 9-16
    • (2005) The AISB'05 Symposium. SSAISB Press , pp. 9-16
    • Avila-Garcia, O.1    Canamero, L.2
  • 18
    • 84868355517 scopus 로고    scopus 로고
    • Hormonal control of behavior: Amines and the biasing of behavioral output in lobsters
    • Kravitz EA (1998) Hormonal control of behavior: amines and the biasing of behavioral output in lobsters. Science 241:1175-1181
    • (1998) Science , vol.241 , pp. 1175-1181
    • Kravitz, E.A.1
  • 20
    • 0141718483 scopus 로고    scopus 로고
    • Self-organization through digital hormones
    • Shen WM (2003) Self-organization through digital hormones. IEEE Intell Syst 18:81-83
    • (2003) IEEE Intell Syst , vol.18 , pp. 81-83
    • Shen, W.M.1
  • 21
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover TM, Hart PE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory IT-13:21-27
    • (1967) IEEE Trans Inf Theory , vol.IT13 , pp. 21-27
    • Cover, T.M.1    Hart, P.E.2
  • 22
    • 78650064965 scopus 로고    scopus 로고
    • IPADE: Iterative prototype adjustment for nearest neighbor classification
    • Triguero I, García S, Herrera F (2010) IPADE: iterative prototype adjustment for nearest neighbor classification. IEEE Trans Neural Netw 21(12):1984-1990
    • (2010) IEEE Trans Neural Netw , vol.21 , Issue.12 , pp. 1984-1990
    • Triguero, I.1    García, S.2    Herrera, F.3
  • 23
    • 77958582596 scopus 로고    scopus 로고
    • A nonparametric feature extraction and its application to nearest neighbor classification for hyperspectral image data
    • Min YJ, Ta YP, Chen KB (2010) A nonparametric feature extraction and its application to nearest neighbor classification for hyperspectral image data. IEEE Trans Geosci Remote Sens 48(3):1279-1293
    • (2010) IEEE Trans Geosci Remote Sens , vol.48 , Issue.3 , pp. 1279-1293
    • Min, Y.J.1    Ta, Y.P.2    Chen, K.B.3
  • 24
    • 1242333099 scopus 로고    scopus 로고
    • Local averaging of ensembles of LVQ-based nearest neighbor classifiers
    • Bermejo S, Cabestany J (2004) Local averaging of ensembles of LVQ-based nearest neighbor classifiers. Appl Intell 20(1):47-58
    • (2004) Appl Intell , vol.20 , Issue.1 , pp. 47-58
    • Bermejo, S.1    Cabestany, J.2
  • 25
    • 79959375445 scopus 로고    scopus 로고
    • Shell-neighbor method and its application in missing data imputation
    • Zhang S (2011) Shell-neighbor method and its application in missing data imputation. Appl Intell 35(1):123-133
    • (2011) Appl Intell , vol.35 , Issue.1 , pp. 123-133
    • Zhang, S.1
  • 26
    • 3543068706 scopus 로고    scopus 로고
    • A grey-based nearest neighbor approach for missing attribute value prediction
    • Huang CC, Lee HM (2004) A grey-based nearest neighbor approach for missing attribute value prediction. Appl Intell 20(3):239-252
    • (2004) Appl Intell , vol.20 , Issue.3 , pp. 239-252
    • Huang, C.C.1    Lee, H.M.2
  • 27
    • 0021451637 scopus 로고
    • Autonomous decentralized control and its application to the rapid transit system
    • Miyamoto S, Mori K, Ihara H (1984) Autonomous decentralized control and its application to the rapid transit system. Comput Ind 5:115-124
    • (1984) Comput Ind , vol.5 , pp. 115-124
    • Miyamoto, S.1    Mori, K.2    Ihara, H.3
  • 28
    • 0036817670 scopus 로고    scopus 로고
    • Hormone-inspired adaptive communication and distributed control for CONRO selfreconfigurable robots
    • Shen WM, Salemi B, Will P (2002) Hormone-inspired adaptive communication and distributed control for CONRO selfreconfigurable robots. IEEE Trans Robot Autom 18:700-712
    • (2002) IEEE Trans Robot Autom , vol.18 , pp. 700-712
    • Shen, W.M.1    Salemi, B.2    Will, P.3
  • 30
    • 69549098047 scopus 로고    scopus 로고
    • A performance sensitive hormoneinspired system for task distribution amongst evolving robots. In: 2008
    • IEEE Press, New York
    • Walker J, Wilson M (2008) A performance sensitive hormoneinspired system for task distribution amongst evolving robots. In: 2008 IEEE/RSJ international conference on intelligent robots and systems. IEEE Press, New York, pp 1293-1298
    • (2008) IEEE/RSJ International Conference on Intelligent Robots and Systems , pp. 1293-1298
    • Walker, J.1    Wilson, M.2
  • 31
    • 79955472290 scopus 로고    scopus 로고
    • Lattice-based artificial endocrine system model and its application in robotic swarms
    • Xu QZ, Wang L (2011) Lattice-based artificial endocrine system model and its application in robotic swarms. Sci China Ser F 54(4):795-811
    • (2011) Sci China ser F , vol.54 , Issue.4 , pp. 795-811
    • Xu, Q.Z.1    Wang, L.2
  • 32
    • 33749587572 scopus 로고    scopus 로고
    • An automatic construction and organization strategy for ensemble learning on data streams
    • Zhang Y, Jin X (2006) An automatic construction and organization strategy for ensemble learning on data streams. SIGMOD Rec 35(3):28-33
    • (2006) SIGMOD Rec , vol.35 , Issue.3 , pp. 28-33
    • Zhang, Y.1    Jin, X.2
  • 35
    • 34548554258 scopus 로고    scopus 로고
    • On reducing classifier granularity in mining concept-drifting data streams. In: Proc fifth
    • Wang P,Wang H,Wu X,WangW, Shi B (2005) On reducing classifier granularity in mining concept-drifting data streams. In: Proc fifth IEEE int'l conf data mining (ICDM'05)
    • (2005) IEEE Int'l Conf Data Mining (ICDM'05)
    • Pwang Hwu Xwangw, W.1    Shi, B.2
  • 36
    • 26844499076 scopus 로고    scopus 로고
    • Incremental linear discriminant analysis for classification of data streams
    • Pang S, Ozawa S, Kasabov N (2005) Incremental linear discriminant analysis for classification of data streams. IEEE Trans Syst Man Cybern, Part B, Cybern 35(5):905-914
    • (2005) IEEE Trans Syst Man Cybern, Part B, Cybern , vol.35 , Issue.5 , pp. 905-914
    • Pang, S.1    Ozawa, S.2    Kasabov, N.3
  • 37
    • 80052607163 scopus 로고    scopus 로고
    • Clustering feature decision tree for semi-supervised classification form high-speed data stream
    • Xu WH, Qin Z, Chang Y (2011) Clustering feature decision tree for semi-supervised classification form high-speed data stream. J Zhejiang Univ Sci C (Comput & Electron) 12(8):615-628
    • J Zhejiang Univ Sci C (Comput & Electron) 12 , vol.2011 , Issue.8 , pp. 615-628
    • Xu, W.H.1    Qin, Z.2    Chang, Y.3
  • 40
    • 57049173376 scopus 로고    scopus 로고
    • Classifying data streams with skewed class distributions and concept drifts
    • Gao J, Ding B, Han J (2008) Classifying data streams with skewed class distributions and concept drifts. IEEE Internet Comput 12(6):37-49
    • (2008) IEEE Internet Comput , vol.12 , Issue.6 , pp. 37-49
    • Gao, J.1    Ding, B.2    Han, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.