메뉴 건너뛰기




Volumn 12, Issue 8, 2011, Pages 615-628

Clustering feature decision trees for semi-supervised classification from high-speed data streams

Author keywords

Clustering feature vector; Decision tree; Semi supervised learning; Stream data classification; Very fast decision tree

Indexed keywords

CLASSIFICATION ACCURACY; CLUSTERING FEATURE; DATA STREAM; DECISION TREE INDUCTION; DECISION TREE MODELS; HIGH-SPEED DATA; LABELED DATA; MICRO-CLUSTERS; REAL-WORLD DATASETS; SEMI-SUPERVISED CLASSIFICATION; SEMI-SUPERVISED LEARNING; STATISTICAL SUMMARY; STREAM DATA; TREE LEAVES; VERY FAST DECISION TREE; CLUSTERING FEATURE VECTORS; DECISION TREE MODELING; SEMI- SUPERVISED LEARNING; STREAM DATA CLASSIFICATIONS; VERY FAST DECISION TREES;

EID: 80052607163     PISSN: 18691951     EISSN: 1869196X     Source Type: Journal    
DOI: 10.1631/jzus.C1000330     Document Type: Article
Times cited : (6)

References (23)
  • 3
    • 79956323714 scopus 로고    scopus 로고
    • Fast perceptron decision tree learning from evolving data streams
    • A. Bifet G. Holmes B. Pfahringer E. Frank 2010 Fast perceptron decision tree learning from evolving data streams LNCS 6119 299 310
    • (2010) LNCS , vol.6119 , pp. 299-310
    • Bifet, A.1    Holmes, G.2    Pfahringer, B.3    Frank, E.4
  • 8
    • 23044519492 scopus 로고    scopus 로고
    • RainForest-a framework for fast decision tree construction of large datasets
    • 10.1023/A:1009839829793
    • J. Gehrke R. Ramakrishnan V. Ganti 2000 RainForest-a framework for fast decision tree construction of large datasets Data Min. Knowl. Disc. 4 2/3 127 162 10.1023/A:1009839829793
    • (2000) Data Min. Knowl. Disc. , vol.4 , Issue.2-3 , pp. 127-162
    • Gehrke, J.1    Ramakrishnan, R.2    Ganti, V.3
  • 14
    • 67049160126 scopus 로고    scopus 로고
    • A Practical Approach to Classify Evolving Data Streams: Training with Limited Amount of Labeled Data
    • doi:10.1109/ICDM.2008.152
    • Masud, M.M., Gao, J., Khan, L., Han, J., Thuraisingham, B., 2008. A Practical Approach to Classify Evolving Data Streams: Training with Limited Amount of Labeled Data. Proc. 8th IEEE Int. Conf. on Data Mining, p.929-934. [doi:10.1109/ICDM.2008.152]
    • (2008) Proc. 8th IEEE Int. Conf. on Data Mining , pp. 929-934
    • Masud M., .M.1    Gao, J.2    Khan, L.3    Han, J.4    Thuraisingham, B.5
  • 15
    • 84897674228 scopus 로고    scopus 로고
    • SLIQ: A fast scalable classifier for data mining
    • M. Mehta R. Agrawal J. Rissanen 1996 SLIQ: a fast scalable classifier for data mining LNCS 1057 18 32
    • (1996) LNCS , vol.1057 , pp. 18-32
    • Mehta, M.1    Agrawal, R.2    Rissanen, J.3
  • 16
    • 38349133427 scopus 로고    scopus 로고
    • New options for Hoeffding trees
    • B. Pfahringer G. Holmes R. Kirkby 2007 New options for Hoeffding trees LNCS 4830 90 99
    • (2007) LNCS , vol.4830 , pp. 90-99
    • Pfahringer, B.1    Holmes, G.2    Kirkby, R.3
  • 21
    • 78449279203 scopus 로고    scopus 로고
    • Clustering-Training for Data Stream Mining
    • doi:10.1109/ICDMW.2006.45
    • Wu, S., Yang, C., Zhou, J., 2006. Clustering-Training for Data Stream Mining. Proc. 6th IEEE Int. Conf. on Data Mining, p.653-656. [doi:10.1109/ICDMW.2006.45]
    • (2006) Proc. 6th IEEE Int. Conf. on Data Mining , pp. 653-656
    • Wu, S.1    Yang, C.2    Zhou, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.