메뉴 건너뛰기




Volumn 1, Issue , 2008, Pages 267-295

Bayesian Methods for Microarray Data

Author keywords

Acute myeloid leukemia tumor cell line; Analysis of variance (ANOVA) model; Bayesian mixture of normals; Differential expression model; Gene expression; Generic model building strategy; Hybridization reactions; Markov chain Monte Carlo; Mixture component and allocation parameter; Systematic nonlinear differences

Indexed keywords


EID: 84868328716     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9780470061619.ch8     Document Type: Chapter
Times cited : (3)

References (69)
  • 2
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon, U., Barkai, N., Notterman, D., Gish, K., Ybarra, S., Mack, D. and Levine, A. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences 96, 6745-6750.
    • (1999) Proceedings of the National Academy of Sciences , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.7
  • 3
    • 12344304266 scopus 로고    scopus 로고
    • Gene selection using a two-level hierarchical Bayesian model
    • Bae, K. and Mallick, B. (2004). Gene selection using a two-level hierarchical Bayesian model. Bioinformatics 20, 3423-3430.
    • (2004) Bioinformatics , vol.20 , pp. 3423-3430
    • Bae, K.1    Mallick, B.2
  • 4
    • 0034948896 scopus 로고    scopus 로고
    • A Bayesian framework for the analysis of microarray data: regularized t-test and statistical inferences of gene changes
    • Baldi, P. and Long, A.D. (2001). A Bayesian framework for the analysis of microarray data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17, 509-519.
    • (2001) Bioinformatics , vol.17 , pp. 509-519
    • Baldi, P.1    Long, A.D.2
  • 6
    • 84889464278 scopus 로고    scopus 로고
    • Tail posterior probability for inference in pairwise and multiclass gene expression data
    • Biometrics, in press
    • Bochkina, N. and Richardson, S. (2006). Tail posterior probability for inference in pairwise and multiclass gene expression data. Biometrics, in press.
    • (2006)
    • Bochkina, N.1    Richardson, S.2
  • 7
    • 8844236882 scopus 로고    scopus 로고
    • A mixture model based strategy for selecting sets of genes in multiclass response microarray experiments
    • Broët, P., Lewin, A., Richardson, S., Dalmasso, C. and Magdelenat, H. (2004). A mixture model based strategy for selecting sets of genes in multiclass response microarray experiments. Bioinformatics 20(16), 2562-2571.
    • (2004) Bioinformatics , vol.20 , Issue.16 , pp. 2562-2571
    • Broët, P.1    Lewin, A.2    Richardson, S.3    Dalmasso, C.4    Magdelenat, H.5
  • 8
    • 0036401627 scopus 로고    scopus 로고
    • Bayesian hierarchical model for identifying change in gene expression from microarray experiments
    • Broët, P. and Richardson, S. (2006). Bayesian hierarchical model for identifying change in gene expression from microarray experiments. Bioinformatics 9, 671-683.
    • (2006) Bioinformatics , vol.9 , pp. 671-683
    • Broët, P.1    Richardson, S.2
  • 9
    • 0036401627 scopus 로고    scopus 로고
    • Bayesian hierarchical model for identifying change in gene expression from microarray experiments
    • Broët, P., Richardson, S. and Radvanyi, F. (2002). Bayesian hierarchical model for identifying change in gene expression from microarray experiments. Journal of Computational Biology 9, 671-683.
    • (2002) Journal of Computational Biology , vol.9 , pp. 671-683
    • Broët, P.1    Richardson, S.2    Radvanyi, F.3
  • 12
    • 0003804002 scopus 로고
    • Measurement Error in Nonlinear Models
    • Chapman and Hall/CRC
    • Carroll, R.J., Ruppert, D. and Stefanski, L.A. (1995). Measurement Error in Nonlinear Models. Chapman and Hall/CRC.
    • (1995)
    • Carroll, R.J.1    Ruppert, D.2    Stefanski, L.A.3
  • 13
  • 14
    • 0042306266 scopus 로고    scopus 로고
    • The practical implementation of Bayesian model selection (discussion)
    • Institute of Mathematical Statistics
    • Chipman, H., George, E. and McCulloch, R. (2001). The practical implementation of Bayesian model selection (discussion). Institute of Mathematical Statistics. Lecture Notes-Monograph Series 38, 67-134.
    • (2001) Lecture Notes-Monograph Series , vol.38 , pp. 67-134
    • Chipman, H.1    George, E.2    McCulloch, R.3
  • 15
    • 0001078433 scopus 로고    scopus 로고
    • Bayesian model averaging and model search strategies
    • J. Bernardo, J. Berger, A. Dawid and A. Smith, eds, Proceedings of the Sixth Valencia International Meeting. Oxford University Press
    • Clyde, M. (1999). Bayesian model averaging and model search strategies. In Bayesian Statistics 6, J. Bernardo, J. Berger, A. Dawid and A. Smith, eds, Proceedings of the Sixth Valencia International Meeting. Oxford University Press, pp. 157-185.
    • (1999) Bayesian Statistics , vol.6 , pp. 157-185
    • Clyde, M.1
  • 16
    • 33845756481 scopus 로고    scopus 로고
    • Model-based clustering for expression data via a dirichlet process mixture model
    • K.-A. Do, P. Müller and M. Vannucci, eds. Cambridge University Press
    • Dahl, D. (2006). Model-based clustering for expression data via a dirichlet process mixture model. In Bayesian Inference for Gene Expression and Proteomics, K.-A. Do, P. Müller and M. Vannucci, eds. Cambridge University Press, pp. 201-218.
    • (2006) Bayesian Inference for Gene Expression and Proteomics , pp. 201-218
    • Dahl, D.1
  • 18
    • 34447534987 scopus 로고    scopus 로고
    • Bayesian Inference for Gene Expression and Proteomics
    • Cambridge University Press
    • Do, K.-A., Müller, P. and Vannucci, M. (2006). Bayesian Inference for Gene Expression and Proteomics. Cambridge University Press.
    • (2006)
    • Do, K.-A.1    Müller, P.2    Vannucci, M.3
  • 22
    • 84889359563 scopus 로고    scopus 로고
    • Models for probability of under-and overexpression: the POE scale
    • K.-A. Do, P. Müller and M. Vannucci, eds. Cambridge University Press
    • Garrett-Mayer, E. and Scharpf, R. (2006). Models for probability of under-and overexpression: the POE scale. In Bayesian Inference for Gene Expression and Proteomics, K.-A. Do, P. Müller and M. Vannucci, eds. Cambridge University Press, pp. 137-154.
    • (2006) Bayesian Inference for Gene Expression and Proteomics , pp. 137-154
    • Garrett-Mayer, E.1    Scharpf, R.2
  • 24
    • 0031526204 scopus 로고    scopus 로고
    • Approaches for Bayesian variable selection
    • George, E. and McCulloch, R. (1997). Approaches for Bayesian variable selection. Statistica Sinica 7, 339-373.
    • (1997) Statistica Sinica , vol.7 , pp. 339-373
    • George, E.1    McCulloch, R.2
  • 25
    • 29344452713 scopus 로고    scopus 로고
    • Probabilistic segmentation and intensity estimation for microarray images
    • Gottardo, R., Besag, J., Stephens, M. and Murua, A. (2006a). Probabilistic segmentation and intensity estimation for microarray images. Biostatistics 7(1), 85-99.
    • (2006) Biostatistics , vol.7 , Issue.1 , pp. 85-99
    • Gottardo, R.1    Besag, J.2    Stephens, M.3    Murua, A.4
  • 27
    • 33645086851 scopus 로고    scopus 로고
    • Bayesian robust inference for differential gene expression in microarrays with multiple samples
    • Gottardo, R., Raftery, A.E., Yeung, K.Y. and Bumgarner, R.E. (2006c). Bayesian robust inference for differential gene expression in microarrays with multiple samples. Biometrics 62, 10-18.
    • (2006) Biometrics , vol.62 , pp. 10-18
    • Gottardo, R.1    Raftery, A.E.2    Yeung, K.Y.3    Bumgarner, R.E.4
  • 28
    • 67349234649 scopus 로고    scopus 로고
    • Alternative prior distributions for variable selection with very many more variables than observations
    • Technical report
    • Griffin, J. and Brown, P. (2005). Alternative prior distributions for variable selection with very many more variables than observations. Technical report. http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/griffin/personal/vspaper.pdf.
    • (2005)
    • Griffin, J.1    Brown, P.2
  • 30
    • 33645507298 scopus 로고    scopus 로고
    • A quantitative study of gene regulation involved in the immune response of anopheles mosquitoes: an application of Bayesian hierarchical clustering
    • Heard, N.A., Holmes, C.C. and Stephens, D.A. (2006a). A quantitative study of gene regulation involved in the immune response of anopheles mosquitoes: an application of Bayesian hierarchical clustering. Journal of the American Statistical Society 101, 18-29.
    • (2006) Journal of the American Statistical Society , vol.101 , pp. 18-29
    • Heard, N.A.1    Holmes, C.C.2    Stephens, D.A.3
  • 31
    • 28044449342 scopus 로고    scopus 로고
    • Bayesian coclustering of anopheles gene expression time series: study of immune defense response to multiple experimental challenges
    • Heard, N.A., Holmes, C.C., Stephens, D.A., Hand, D.J. and Dimopoulos, G. (2006b). Bayesian coclustering of anopheles gene expression time series: study of immune defense response to multiple experimental challenges. Proceedings of the National Academy of Sciences 102, 16939-16944.
    • (2006) Proceedings of the National Academy of Sciences , vol.102 , pp. 16939-16944
    • Heard, N.A.1    Holmes, C.C.2    Stephens, D.A.3    Hand, D.J.4    Dimopoulos, G.5
  • 32
    • 24644473482 scopus 로고    scopus 로고
    • BGX: a fully Bayesian gene expression index for Affymetrix GeneChip data
    • Hein, A.-M.K., Richardson, S., Causton, H.C., Ambler, G.K. and Green, P.J. (2005). BGX: a fully Bayesian gene expression index for Affymetrix GeneChip data. Biostatistics 6(3), 349-373.
    • (2005) Biostatistics , vol.6 , Issue.3 , pp. 349-373
    • Hein, A.-M.K.1    Richardson, S.2    Causton, H.C.3    Ambler, G.K.4    Green, P.J.5
  • 33
    • 33749386597 scopus 로고    scopus 로고
    • A powerful method for detecting differentially expressed genes from GeneChip arrays with no replicates
    • Hein, A.-M.K. and Richardson, S. (2006). A powerful method for detecting differentially expressed genes from GeneChip arrays with no replicates. BMC Bioinformatics 7, 353.
    • (2006) BMC Bioinformatics , vol.7 , pp. 353
    • Hein, A.-M.K.1    Richardson, S.2
  • 34
    • 84867151416 scopus 로고    scopus 로고
    • Bayesian auxiliary variable models for binary and multinomial regression
    • Holmes, C. and Held, L. (2006). Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Analysis 1, 145-168.
    • (2006) Bayesian Analysis , vol.1 , pp. 145-168
    • Holmes, C.1    Held, L.2
  • 35
    • 84867158337 scopus 로고    scopus 로고
    • Bayesian identification of differential gene expression induced by metals in human bronchial epithelial cells
    • House, L., Clyde, M. and Huang, Y.-C.T. (2006). Bayesian identification of differential gene expression induced by metals in human bronchial epithelial cells. Bayesian Analysis 1, 105-120.
    • (2006) Bayesian Analysis , vol.1 , pp. 105-120
    • House, L.1    Clyde, M.2    Huang, Y.-C.T.3
  • 37
    • 0042744696 scopus 로고    scopus 로고
    • Detecting differentially expressed genes in microarrays using Bayesian model selection
    • Ishwaran, H. and Rao, J. (2003). Detecting differentially expressed genes in microarrays using Bayesian model selection. Journal of the American Statistical Association 98, 438-455.
    • (2003) Journal of the American Statistical Association , vol.98 , pp. 438-455
    • Ishwaran, H.1    Rao, J.2
  • 38
    • 22944460748 scopus 로고    scopus 로고
    • Spike and slab variable selection: frequentist and Bayesian strategies
    • Ishwaran, H. and Rao, J. (2005a). Spike and slab variable selection: frequentist and Bayesian strategies. Annals of Statistics 33, 730-773.
    • (2005) Annals of Statistics , vol.33 , pp. 730-773
    • Ishwaran, H.1    Rao, J.2
  • 40
    • 84889399021 scopus 로고    scopus 로고
    • Population based reversible jump Markov chain Monte Carlo
    • Technical Report, Imperial College
    • Jasra, A., Stephens, D. and Holmes, C. (2006). Population based reversible jump Markov chain Monte Carlo. Technical Report, Imperial College.
    • (2006)
    • Jasra, A.1    Stephens, D.2    Holmes, C.3
  • 41
    • 0346888587 scopus 로고    scopus 로고
    • On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles
    • Kendziorski, C., Newton, M., Lan, H. and Gould, M.N. (2003). On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles. Statistics in Medicine 22, 3899-3914.
    • (2003) Statistics in Medicine , vol.22 , pp. 3899-3914
    • Kendziorski, C.1    Newton, M.2    Lan, H.3    Gould, M.N.4
  • 42
    • 33845734547 scopus 로고    scopus 로고
    • Variable selection in clustering via Dirichlet process mixture models
    • Kim, S., Tadesse, M. and Vanucci, M. (2006). Variable selection in clustering via Dirichlet process mixture models. Biometrika 93(4), 877-893.
    • (2006) Biometrika , vol.93 , Issue.4 , pp. 877-893
    • Kim, S.1    Tadesse, M.2    Vanucci, M.3
  • 44
    • 84889348777 scopus 로고    scopus 로고
    • Bayesian clustering using a heterogeneous Dirichlet process, with application to parametric gene expression profiles
    • Technical report, University of Bristol
    • Lau, J. and Green, P. (2006b). Bayesian clustering using a heterogeneous Dirichlet process, with application to parametric gene expression profiles. Technical report, University of Bristol.
    • (2006)
    • Lau, J.1    Green, P.2
  • 45
    • 12244265090 scopus 로고    scopus 로고
    • Gene selection: a Bayesian variable selection approach
    • Lee, K., Sha, N., Dougherty, E., Vannucci, M. and Mallick, B. (2003). Gene selection: a Bayesian variable selection approach. Bioinformatics 19(1), 90-97.
    • (2003) Bioinformatics , vol.19 , Issue.1 , pp. 90-97
    • Lee, K.1    Sha, N.2    Dougherty, E.3    Vannucci, M.4    Mallick, B.5
  • 47
  • 48
  • 49
    • 49549125943 scopus 로고    scopus 로고
    • Sparse statistical modelling in gene expression genomics
    • K.-A. Do, P. Müller and M. Vannucci, eds. Cambridge University Press
    • Lucas, J., Carvalho, C., Wang, Q., Bild, A., Nevins, J. and West, M. (2006). Sparse statistical modelling in gene expression genomics. In Bayesian Inference for Gene Expression and Proteomics, K.-A. Do, P. Müller and M. Vannucci, eds. Cambridge University Press, pp. 155-176.
    • (2006) Bayesian Inference for Gene Expression and Proteomics , pp. 155-176
    • Lucas, J.1    Carvalho, C.2    Wang, Q.3    Bild, A.4    Nevins, J.5    West, M.6
  • 50
    • 3042686005 scopus 로고    scopus 로고
    • Bayesian mixture model based clustering of replicated microarray data
    • Medvedovic, M., Yeung, K. and Bumgarner, R. (2004). Bayesian mixture model based clustering of replicated microarray data. Bioinformatics 20, 1222-1232.
    • (2004) Bioinformatics , vol.20 , pp. 1222-1232
    • Medvedovic, M.1    Yeung, K.2    Bumgarner, R.3
  • 52
    • 41349110333 scopus 로고    scopus 로고
    • FDR and Bayesian multiple comparison rules
    • J.M. Bernardo, M.J. Bayarri, J.O. Berger, A.P. Dawid, D. Heckerman, A.F.M. Smith and M. West, eds. Oxford University Press
    • Müller, P., Parmigiani, G. and Rice, K. (2007). FDR and Bayesian multiple comparison rules. In Bayesian Statistics 8, J.M. Bernardo, M.J. Bayarri, J.O. Berger, A.P. Dawid, D. Heckerman, A.F.M. Smith and M. West, eds. Oxford University Press.
    • (2007) Bayesian Statistics , vol.8
    • Müller, P.1    Parmigiani, G.2    Rice, K.3
  • 53
    • 0034923013 scopus 로고    scopus 로고
    • On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data
    • Newton, M., Kendziorski, C., Richmond, C., Blattner, F. and Tsui, K. (2001). On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data. Journal of Computational Biology 8, 37-52.
    • (2001) Journal of Computational Biology , vol.8 , pp. 37-52
    • Newton, M.1    Kendziorski, C.2    Richmond, C.3    Blattner, F.4    Tsui, K.5
  • 54
    • 4444235995 scopus 로고    scopus 로고
    • Detecting differential gene expression with a semiparametric hierarchical mixture model
    • Newton, M., Noueiry, A., Sarkar, D. and Ahlquist, P. (2004). Detecting differential gene expression with a semiparametric hierarchical mixture model. Biostatistics 5, 155-176.
    • (2004) Biostatistics , vol.5 , pp. 155-176
    • Newton, M.1    Noueiry, A.2    Sarkar, D.3    Ahlquist, P.4
  • 57
    • 1142301686 scopus 로고    scopus 로고
    • A method for normalizing microarrays using genes that are not differentially expressed
    • Reilly, C., Wang, C. and Rutherford, M. (2003). A method for normalizing microarrays using genes that are not differentially expressed. Journal of the American Statistical Association 98, 868-878.
    • (2003) Journal of the American Statistical Association , vol.98 , pp. 868-878
    • Reilly, C.1    Wang, C.2    Rutherford, M.3
  • 58
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with an unknown number of components (with discussion)
    • Richardson, S. and Green, P. (1997). On Bayesian analysis of mixtures with an unknown number of components (with discussion). Journal of the Royal Statistical Society, Series B 59, 731-792.
    • (1997) Journal of the Royal Statistical Society, Series B , vol.59 , pp. 731-792
    • Richardson, S.1    Green, P.2
  • 59
    • 0034536614 scopus 로고    scopus 로고
    • Analyzing high-density oligonucleotide gene expression array data
    • Schadt, E., Li, C., Su, C. and Wong, W. (2000). Analyzing high-density oligonucleotide gene expression array data. Journal of Cellular Biochemistry 80, 192-202.
    • (2000) Journal of Cellular Biochemistry , vol.80 , pp. 192-202
    • Schadt, E.1    Li, C.2    Su, C.3    Wong, W.4
  • 60
    • 0000720609 scopus 로고
    • A constructive definition of dirichlet priors
    • Sethurman, J. (1994). A constructive definition of dirichlet priors. Statistica Sinica 4, 639-650.
    • (1994) Statistica Sinica , vol.4 , pp. 639-650
    • Sethurman, J.1
  • 62
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
    • Article 3
    • Smyth, G.K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology Article 3.
    • (2004) Statistical Applications in Genetics and Molecular Biology
    • Smyth, G.K.1
  • 66
    • 27744518228 scopus 로고    scopus 로고
    • Modelling gene expression data over time: curve clustering with informative prior distributions
    • J.M. Bernardo, M.J. Bayarri, J.O. Berger, A.P. Dawid, D. Heckerman, A.F.M. Smith and M. West, eds. Oxford University Press
    • Wakefield, J.C., Zhou, C. and Self, S.G. (2003). Modelling gene expression data over time: curve clustering with informative prior distributions. In Bayesian Statistics 7, J.M. Bernardo, M.J. Bayarri, J.O. Berger, A.P. Dawid, D. Heckerman, A.F.M. Smith and M. West, eds. Oxford University Press, pp. 721-732.
    • (2003) Bayesian Statistics , vol.7 , pp. 721-732
    • Wakefield, J.C.1    Zhou, C.2    Self, S.G.3
  • 68
    • 0242295767 scopus 로고    scopus 로고
    • Bayesian factor regression models in the "large p, small n" paradigm
    • J. Bernardo, M. Bayarri, J. Berger, A. Dawid, D. Heckerman, A. Smith and M. West, eds, Proceedings of the Seventh Valencia International Meeting. Oxford University Press
    • West, M. (2003). Bayesian factor regression models in the "large p, small n" paradigm. In Bayesian Statistics 7, J. Bernardo, M. Bayarri, J. Berger, A. Dawid, D. Heckerman, A. Smith and M. West, eds, Proceedings of the Seventh Valencia International Meeting. Oxford University Press, pp. 733-742.
    • (2003) Bayesian Statistics , vol.7 , pp. 733-742
    • West, M.1
  • 69
    • 33745283400 scopus 로고    scopus 로고
    • A Bayesian mixture model for partitioning gene expression data
    • Zhou, C. and Wakefield, J.C. (2006). A Bayesian mixture model for partitioning gene expression data. Biometrics 62, 515-525.
    • (2006) Biometrics , vol.62 , pp. 515-525
    • Zhou, C.1    Wakefield, J.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.