-
1
-
-
51749120550
-
Reservoir optimization in recurrent neural networks using kronecker kernels. In Proceedings of the IEEE Symposium on Circuits and Systems
-
Piscataway, NJ: IEEE
-
Ajdari Rad, A., Jalili, M., and Hasler, M. (2008). Reservoir optimization in recurrent neural networks using kronecker kernels. In Proceedings of the IEEE Symposium on Circuits and Systems (pp. 868-871). Piscataway, NJ: IEEE.
-
(2008)
, pp. 868-871
-
-
Ajdari Rad, A.1
Jalili, M.2
Hasler, M.3
-
2
-
-
0034186923
-
New results on recurrent network training:
-
Atiya, A., and Parlos, A. (2000). New results on recurrent network training: Unifying the algorithms and accelerating convergence. IEEE Transactions on Neural.
-
(2000)
Networks
, vol.11
, pp. 697-709
-
-
Atiya, A.1
Parlos, A.2
-
3
-
-
2942552269
-
Real-time computation at the edge of chaos in recurrent neural networks
-
Bertschinger, N., and Natschlager, T. (2004). Real-time computation at the edge of chaos in recurrent neural networks. Neural Computation, 16(7), 1413-1436.
-
(2004)
Neural Computation
, vol.16
, Issue.7
, pp. 1413-1436
-
-
Bertschinger, N.1
Natschlager, T.2
-
4
-
-
84954240138
-
Modeling reward functions for incomplete state representations via echo state networks. In Proceedings of the IEEE International Joint Conference on Neural Networks
-
Piscataway, NJ: IEEE.
-
Bush, K., and Anderson, C. (2005). Modeling reward functions for incomplete state representations via echo state networks. In Proceedings of the IEEE International Joint Conference on Neural Networks (pp. 2995-3000). Piscataway, NJ: IEEE.
-
(2005)
, pp. 2995-3000
-
-
Bush, K.1
Anderson, C.2
-
5
-
-
77953355233
-
Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons
-
Busing, L., Schrauwen, B., and Legenstein, R. A. (2010). Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons. Neural Computation, 22(5), 1272-1311.
-
(2010)
Neural Computation
, vol.22
, Issue.5
, pp. 1272-1311
-
-
Busing, L.1
Schrauwen, B.2
Legenstein, R.A.3
-
6
-
-
33750137073
-
Feed-forward echo state networks. In Proceedings of the IEEE International Joint Conference on Neural Networks
-
Piscataway, NJ: IEEE
-
Cernansky, M., and Makula, M. (2005). Feed-forward echo state networks. In Proceedings of the IEEE International Joint Conference on Neural Networks (pp. 1479-1482). Piscataway, NJ: IEEE.
-
(2005)
, pp. 1479-1482
-
-
Cernansky, M.1
Makula, M.2
-
7
-
-
58849107261
-
Predictive modelling with echo state networks. In Proceedings of the 18th International Conference on Artificial Neural Networks
-
New York: Springer-Verlag
-
Cernansky, M., and Tino, P. (2008). Predictive modelling with echo state networks. In Proceedings of the 18th International Conference on Artificial Neural Networks (pp. 778-787). New York: Springer-Verlag.
-
(2008)
, pp. 778-787
-
-
Cernansky, M.1
Tino, P.2
-
8
-
-
34548609011
-
Collective behavior of a small-world recurrent neural system with scale-free distribution
-
Deng, Z., and Zhang, Y. (2007). Collective behavior of a small-world recurrent neural system with scale-free distribution. IEEE Transactions on Neural Networks, 18(5), 1364-1375.
-
(2007)
IEEE Transactions on Neural Networks
, vol.18
, Issue.5
, pp. 1364-1375
-
-
Deng, Z.1
Zhang, Y.2
-
9
-
-
58149236632
-
Liquid state machines and cultured cortical networks: The separation property
-
Dockendorf, K., Park, I., Ping, H., Principe, J. C., and DeMarse, T. (2009). Liquid state machines and cultured cortical networks: The separation property. Biosystems, 95(2), 90-97.
-
(2009)
Biosystems
, vol.95
, Issue.2
, pp. 90-97
-
-
Dockendorf, K.1
Park, I.2
Ping, H.3
Principe, J.C.4
DeMarse, T.5
-
10
-
-
61849181483
-
Pruning and regularization in reservoir computing
-
Dutoit, X., Schrauwen, B., Van Campenhout, J., Stroobandt, D., Van Brussel, H., and Nuttin, M. (2009). Pruning and regularization in reservoir computing. Neurocomputing, 72, 1534-1546.
-
(2009)
Neurocomputing
, vol.72
, pp. 1534-1546
-
-
Dutoit, X.1
Schrauwen, B.2
Van Campenhout, J.3
Stroobandt, D.4
Van Brussel, H.5
Nuttin, M.6
-
11
-
-
33646172134
-
Short term memory and pattern matching with simple echo state networks. In Proc. of the 15th International Conference on Artificial Neural Networks
-
New York: Springer-Verlag.
-
Fette, G., and Eggert, J. (2005). Short term memory and pattern matching with simple echo state networks. In Proc. of the 15th International Conference on Artificial Neural Networks (pp. 13-18). New York: Springer-Verlag.
-
(2005)
, pp. 13-18
-
-
Fette, G.1
Eggert, J.2
-
12
-
-
6344249564
-
Perspectives of the high-dimensional dynamics of neural microcircuits from the point of view of low-dimensional readouts
-
Hausler, S.,Markram,M., andMaass,W. (2003). Perspectives of the high-dimensional dynamics of neural microcircuits from the point of view of low-dimensional readouts. Complexity, 8(4), 39-50.
-
(2003)
Complexity
, vol.8
, Issue.4
, pp. 39-50
-
-
Hausler, S.1
Markram, M.2
Maass, W.3
-
13
-
-
73949157176
-
Echo state networks with filter neurons and a delay and sum readout
-
Holzmann, G., and Hauser, H. (2009). Echo state networks with filter neurons and a delay and sum readout. Neural Networks, 32(2), 244-256.
-
(2009)
Neural Networks
, vol.32
, Issue.2
, pp. 244-256
-
-
Holzmann, G.1
Hauser, H.2
-
14
-
-
19644372764
-
Identification of motion with echo state network. In Proceedings of the OCEANS 2004 MTS/IEEE-TECHNOOCEAN Conference
-
Ishii, K., van der Zant, T., Becanovic, V. and Ploger, P. (2004). Identification of motion with echo state network. In Proceedings of the OCEANS 2004 MTS/IEEE-TECHNOOCEAN Conference (Vol. 3, pp. 1205-1210).
-
(2004)
, vol.3
, pp. 1205-1210
-
-
Ishii, K.1
van der Zant, T.2
Becanovic, V.3
Ploger, P.4
-
15
-
-
84874066973
-
-
The "echo state" approach to analysing and training recurrent neural networks (Tech. Rep. No. 148). Sankt Augustin: GermanNational Research Center for Information Technology.
-
Jaeger, H. (2001). The "echo state" approach to analysing and training recurrent neural networks (Tech. Rep. No. 148). Sankt Augustin: GermanNational Research Center for Information Technology.
-
(2001)
-
-
Jaeger, H.1
-
16
-
-
1842488370
-
-
(Tech. Rep. No. 152). Sankt Augustin: German National Research Center for Information Technology
-
Jaeger,H. (2002a). Short term memory in echo state networks (Tech. Rep. No. 152). Sankt Augustin: German National Research Center for Information Technology.
-
(2002)
Short term memory in echo state networks
-
-
Jaeger, H.1
-
17
-
-
33749833931
-
Atutorial on training recurrent neural networks, covering BPPT,RTRL, EKF and the "echo state network" approach
-
(Tech. Rep. No. 159). Sankt Augustin: German National Research Center for Information Technology
-
Jaeger,H. (2002b). Atutorial on training recurrent neural networks, covering BPPT,RTRL, EKF and the "echo state network" approach (Tech. Rep. No. 159). Sankt Augustin: German National Research Center for Information Technology.
-
(2002)
-
-
Jaeger, H.1
-
18
-
-
78349289898
-
-
S. Becker, S. Thrün, and K. Obermayer (Eds.), Advances in neural information processing systems, 15. Cambridge, MA: MIT Press
-
Jaeger,H. (2003). Adaptive nonlinear systems identification with echo state network. In S. Becker, S. Thrün, and K. Obermayer (Eds.), Advances in neural information processing systems, 15 (pp. 593-600). Cambridge, MA: MIT Press.
-
(2003)
Adaptive nonlinear systems identification with echo state network
, pp. 593-600
-
-
Jaeger, H.1
-
19
-
-
33750099080
-
Reservoir riddles: Suggestions for echo state network research. In Proceedings of the IEEE International Joint Conference on Neural Networks
-
New York: Springer-Verlag
-
Jaeger, H. (2005). Reservoir riddles: Suggestions for echo state network research. In Proceedings of the IEEE International Joint Conference on Neural Networks (pp. 1460-1462). New York: Springer-Verlag.
-
(2005)
, pp. 1460-1462
-
-
Jaeger, H.1
-
20
-
-
85039661830
-
-
Discovering multiscale dynamical features with hierarchical echo state networks (Tech. Rep. No. 10). Bremen: Jacobs University.
-
Jaeger, H. (2007). Discovering multiscale dynamical features with hierarchical echo state networks (Tech. Rep. No. 10). Bremen: Jacobs University.
-
(2007)
-
-
Jaeger, H.1
-
21
-
-
1842421269
-
Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless telecommunication
-
Jaeger, H., and Hass, H. (2004). Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless telecommunication. Science, 304, 78-80.
-
(2004)
Science
, vol.304
, pp. 78-80
-
-
Jaeger, H.1
Hass, H.2
-
22
-
-
34249938474
-
Optimisation and applications of echo state networks with leaky-integrator neurons
-
Jaeger,H., Lukosevicius,M., Popovici,D.,andSiewert, U. (2007). Optimisation and applications of echo state networks with leaky-integrator neurons. Neural Networks, 20(3), 335-352.
-
(2007)
Neural Networks
, vol.20
, Issue.3
, pp. 335-352
-
-
Jaeger, H.1
Lukosevicius, M.2
Popovici, D.3
Siewert, U.4
-
23
-
-
34548726030
-
Is there a liquid state machine in the bacterium Escherichia coli? In Proceedings of the 2007 IEEE Symposium on Artificial Life
-
Piscataway, NJ: IEEE.
-
Jones, B., Stekel, D., Rowe, J., and Fernando, C. (2007). Is there a liquid state machine in the bacterium Escherichia coli? In Proceedings of the 2007 IEEE Symposium on Artificial Life (pp. 187-191). Piscataway, NJ: IEEE.
-
(2007)
, pp. 187-191
-
-
Jones, B.1
Stekel, D.2
Rowe, J.3
Fernando, C.4
-
24
-
-
33846543881
-
Edge of chaos and prediction of computational performance for neural circuit models
-
Legenstein, R., and Maass, W. (2007). Edge of chaos and prediction of computational performance for neural circuit models. Neural Networks, 20(3), 323-334.
-
(2007)
Neural Networks
, vol.20
, Issue.3
, pp. 323-334
-
-
Legenstein, R.1
Maass, W.2
-
25
-
-
68649088777
-
Reservoir computing approaches to recurrent neural network training
-
Lukosevicius,M., and Jaeger, H. (2009). Reservoir computing approaches to recurrent neural network training. Computer Science Review, 3(3), 127-149.
-
(2009)
Computer Science Review
, vol.3
, Issue.3
, pp. 127-149
-
-
Lukosevicius, M.1
Jaeger, H.2
-
26
-
-
79251542316
-
A computational model of filtering, detection and compression in the cochlea. In Proceedings of the IEEE ICASSP
-
Piscataway, NJ: IEEE.
-
Lyon, R. F. (1982). A computational model of filtering, detection and compression in the cochlea. In Proceedings of the IEEE ICASSP (pp. 1282-1285). Piscataway, NJ: IEEE. Maass, W., Natschlager, T., and Markram, H. (2002). Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation, 14(11), 2531-2560.
-
(1982)
, pp. 1282-1285
-
-
Lyon, R.F.1
-
27
-
-
0036834701
-
Real-time computing without stable states: A new framework for neural computation based on perturbations
-
Maass, W., Natschlager, T., and Markram, H. (2002). Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation, 14(11), 2531-2560.
-
(2002)
Neural Computation
, vol.14
, Issue.11
, pp. 2531-2560
-
-
Maass, W.1
Natschlager, T.2
Markram, H.3
-
28
-
-
28644432156
-
Fading memory and kernel properties of generic cortical microcircuit models
-
Maass,W., Natschlager, T., andMarkram, H. (2004). Fading memory and kernel properties of generic cortical microcircuit models. Journal of Physiology, 98(4-6), 315-330.
-
(2004)
Journal of Physiology
, vol.98
, Issue.4-6
, pp. 315-330
-
-
Maass, W.1
Natschlager, T.2
Markram, H.3
-
29
-
-
33846023013
-
Analysis and design of echo state network
-
Ozturk, M. C., Xu, D., and Principe, J. C. (2007). Analysis and design of echo state network. Neural Computation, 19(1), 111-138. Rodan, A., and Ti? no, P. (2011). Minimum complexity echo state network. IEEE Transactions on Neural Networks, 22(1), 131-144.
-
(2007)
Neural Computation
, vol.19
, Issue.1
, pp. 111-138
-
-
Ozturk, M.C.1
Xu, D.2
Principe, J.C.3
-
30
-
-
78651295386
-
Minimum complexity echo state network
-
Rodan, A., and Tiňo, P. (2011). Minimum complexity echo state network. IEEE Transactions on Neural Networks, 22(1), 131-144.
-
(2011)
IEEE Transactions on Neural Networks
, vol.22
, Issue.1
, pp. 131-144
-
-
Rodan, A.1
Tiňo, P.2
-
31
-
-
33847649288
-
Training recurrent networks by Evolino
-
Schmidhuber, J., Wierstra, D., Gagliolo, M., and Gomez, F. (2007). Training recurrent networks by Evolino. Neural Computation, 19, 757-779.
-
(2007)
Neural Computation
, vol.19
, pp. 757-779
-
-
Schmidhuber, J.1
Wierstra, D.2
Gagliolo, M.3
Gomez, F.4
-
32
-
-
85162038319
-
-
D. Koller, D. Shuurmans, Y., Bengio, and L. Bottou (Eds.), Neural information processing systems. Cambridge, MA: MIT Press.
-
Schrauwen, B., Busing, L., and Legenstein, R. A. (2008). On computational power and the order-chaos phase transition in reservoir computing. In D. Koller, D. Shuurmans, Y., Bengio, and L. Bottou (Eds.), Neural information processing systems (pp. 425-1432). Cambridge, MA: MIT Press.
-
(2008)
On computational power and the order-chaos phase transition in reservoir computing
, pp. 425-1432
-
-
Schrauwen, B.1
Busing, L.2
Legenstein, R.A.3
-
33
-
-
38149062901
-
The introduction of time-scales in reservoir computing, applied to isolated digits recognition. In Proceedings of the 17th International Conference on Artificial Neural Networks
-
New York: Springer-Verlag.
-
Schrauwen, B., Defour, J., Verstraeten, D., and Van Campenhout, J. M. (2007). The introduction of time-scales in reservoir computing, applied to isolated digits recognition. In Proceedings of the 17th International Conference on Artificial Neural Networks (pp. 471-479). New York: Springer-Verlag.
-
(2007)
, pp. 471-479
-
-
Schrauwen, B.1
Defour, J.2
Verstraeten, D.3
Van Campenhout, J.M.4
-
34
-
-
40649085253
-
Improving reservoirs using intrinsic plasticity
-
Schrauwen, B., Wardermann, M., Verstraeten, D., Steil, J., and Stroobandt, D. (2008). Improving reservoirs using intrinsic plasticity. Neurocomputing, 71(7-9), 1159-1171.
-
(2008)
Neurocomputing
, vol.71
, Issue.7-9
, pp. 1159-1171
-
-
Schrauwen, B.1
Wardermann, M.2
Verstraeten, D.3
Steil, J.4
Stroobandt, D.5
-
35
-
-
34249870193
-
Minimum mean squared error time series classification using an echo state network prediction model. In IEEE International Symposium on Circuits and Systems
-
Piscataway, NJ: IEEE.
-
Skowronski, M. D., and Harris, J. G. (2006). Minimum mean squared error time series classification using an echo state network prediction model. In IEEE International Symposium on Circuits and Systems (pp. 3153-3156). Piscataway, NJ: IEEE.
-
(2006)
, pp. 3153-3156
-
-
Skowronski, M.D.1
Harris, J.G.2
-
36
-
-
10944225085
-
Backpropagation-decorrelation: Recurrent learning with o(n) complexity. In Proc. of the International Joint Conference on Neural Networks
-
New York: Springer-Verlag.
-
Steil, J. (2004). Backpropagation-decorrelation: Recurrent learning with o(n) complexity. In Proc. of the International Joint Conference on Neural Networks (pp. 843-848). New York: Springer-Verlag.
-
(2004)
, pp. 843-848
-
-
Steil, J.1
-
37
-
-
34249811184
-
Online reservoir adaptation by intrinsic plasticity for backpropagation-decorrelation and echo state learning
-
Steil, J. (2007). Online reservoir adaptation by intrinsic plasticity for backpropagation-decorrelation and echo state learning. Neural Networks, 20, 353-364.
-
(2007)
Neural Networks
, vol.20
, pp. 353-364
-
-
Steil, J.1
-
38
-
-
0012940362
-
The value of symbolic computation
-
Tabor, W. (2002). The value of symbolic computation. Ecological Psychology, 14(1-2), 21-51.
-
(2002)
Ecological Psychology
, vol.14
, Issue.1-2
, pp. 21-51
-
-
Tabor, W.1
-
39
-
-
0000860629
-
Predicting the future of discrete sequences from fractal representations of the past
-
Tiňo, P.,andDorffner, G. (2001). Predicting the future of discrete sequences from fractal representations of the past. Machine Learning, 45(2), 187-218.
-
(2001)
Machine Learning
, vol.45
, Issue.2
, pp. 187-218
-
-
Tiňo, P.1
Dorffner, G.2
-
40
-
-
34249874927
-
Learning grammatical structure with echo state network
-
Tong, M. H., Bicket, A. D., Christiansen, E. M., and Cottrell, G. W. (2007). Learning grammatical structure with echo state network. Neural Networks, 20, 424-432.
-
(2007)
Neural Networks
, vol.20
, pp. 424-432
-
-
Tong, M.H.1
Bicket, A.D.2
Christiansen, E.M.3
Cottrell, G.W.4
-
41
-
-
84949726999
-
-
J. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta (Eds.), Advances in neural information processing systems, 23. Red Hook, NY: Curran Associates.
-
Triefenbach, F., Jalalvand, A., Schrauwen, B., and Martens, J. (2010). Phoneme recognition with large hierarchical reservoirs. In J. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta (Eds.), Advances in neural information processing systems, 23 (pp. 2307-2315). Red Hook, NY: Curran Associates.
-
(2010)
Phoneme recognition with large hierarchical reservoirs
, pp. 2307-2315
-
-
Triefenbach, F.1
Jalalvand, A.2
Schrauwen, B.3
Martens, J.4
-
42
-
-
79959400804
-
Memory versus nonlinearity in reservoirs. In The 2010 International Joint Conference on Neural Networks
-
Piscataway, NJ: IEEE Press.
-
Verstraeten, D., Dambre, J., Dutoit, X., and Schrauwen, B. (2010). Memory versus nonlinearity in reservoirs. In The 2010 International Joint Conference on Neural Networks (pp. 1-8). Piscataway, NJ: IEEE Press.
-
(2010)
, pp. 1-8
-
-
Verstraeten, D.1
Dambre, J.2
Dutoit, X.3
Schrauwen, B.4
-
43
-
-
84887006782
-
The unified reservoir computing concept and its digital hardware implementations. In Proc. of the EPFL-LATSIS Symposium 2006
-
Swiss Federal Institute of Technology at Lausanne.
-
Verstraeten, D., Schrauwen, B., D'Haene, M., and Stroobandt, D. (2006). The unified reservoir computing concept and its digital hardware implementations. In Proc. of the EPFL-LATSIS Symposium 2006 (pp. 139-140). Swiss Federal Institute of Technology at Lausanne.
-
(2006)
, pp. 139-140
-
-
Verstraeten, D.1
Schrauwen, B.2
D'Haene, M.3
Stroobandt, D.4
-
44
-
-
34249815487
-
An experimental unification of reservoir computing methods
-
Verstraeten,D., Schrauwen, B., D'Haene, M.,andStroobandt,D. (2007). An experimental unification of reservoir computing methods. Neural Networks, 20, 391-403.
-
(2007)
Neural Networks
, vol.20
, pp. 391-403
-
-
Verstraeten, D.1
Schrauwen, B.2
D'Haene, M.3
Stroobandt, D.4
-
45
-
-
0032482432
-
Collective dynamics of "small-world" networks
-
Watts,D. J.,andStrogatz, S. H. (1998). Collective dynamics of "small-world" networks. Nature, 393 (6684), 409-10.1998.
-
(1998)
Nature
, vol.393
, Issue.6684
-
-
Watts, D.J.1
Strogatz, S.H.2
-
46
-
-
58849145264
-
Stable output feedback in reservoir computing using ridge regression. In Proceedings of the 18th International Conference on Artificial Neural Networks
-
New York: Springer-Verlag.
-
Wyffels, F., Schrauwen, B., and Stroobandt, D. (2008). Stable output feedback in reservoir computing using ridge regression. In Proceedings of the 18th International Conference on Artificial Neural Networks (pp. 808-817). New York: Springer-Verlag.
-
(2008)
, pp. 808-817
-
-
Wyffels, F.1
Schrauwen, B.2
Stroobandt, D.3
-
47
-
-
34249819041
-
Decoupled echo state networks with lateral inhibition
-
Xue, Y. Yang, L., and Haykin, S. (2007). Decoupled echo state networks with lateral inhibition. Neural Networks, 20, 365-376.
-
(2007)
Neural Networks
, vol.20
, pp. 365-376
-
-
Xue, Y.1
Yang, L.2
Haykin, S.3
-
48
-
-
58049171366
-
Echo state networks with decoupled reservoir states. In 18th IEEE International Workshop on Machine Learning for Signal Processing
-
Piscataway, NJ: IEEE.
-
Zhang, B., and Wang, Y. (2008). Echo state networks with decoupled reservoir states. In 18th IEEE International Workshop on Machine Learning for Signal Processing. Piscataway, NJ: IEEE.
-
(2008)
-
-
Zhang, B.1
Wang, Y.2
|