메뉴 건너뛰기




Volumn 11, Issue 3, 1998, Pages 385-390

A unified algorithm for principal and minor components extraction

Author keywords

Dynamical system; Minor component extraction; Natural gradient; Principal component extraction; Singular value decomposition

Indexed keywords

DATA PROCESSING; DIFFERENTIAL EQUATIONS; EIGENVALUES AND EIGENFUNCTIONS; LYAPUNOV METHODS; MATRIX ALGEBRA; NEURAL NETWORKS;

EID: 0345627997     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-6080(98)00004-5     Document Type: Article
Times cited : (81)

References (20)
  • 1
    • 0017392285 scopus 로고
    • Neural theory of association and concept-formation
    • Amari S. Neural theory of association and concept-formation. Biology Cybernetics. 26:1977;175-185.
    • (1977) Biology Cybernetics , vol.26 , pp. 175-185
    • Amari, S.1
  • 2
    • 0003658081 scopus 로고
    • Differential-geometrical methods of statistics
    • Springer, New York
    • Amari, S. (1985) Differential-Geometrical Methods of Statistics. Springer Lecture Notes in Statistics, 28. Springer, New York.
    • (1985) Springer Lecture Notes in Statistics , vol.28
    • Amari, S.1
  • 3
    • 0001777754 scopus 로고    scopus 로고
    • Information geometry
    • Nencka, H., Bourguignon, J.-P. (Eds.). American Mathematical Society, Rhode Island
    • Amari, S. (1997a) Information geometry. In Nencka, H., Bourguignon, J.-P. (Eds.), Geometry and Nature. Contemporary Mathematics, 203. American Mathematical Society, Rhode Island, pp. 81-95.
    • (1997) Geometry and Nature. Contemporary Mathematics , vol.203 , pp. 81-95
    • Amari, S.1
  • 4
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently
    • Amari S. Natural gradient works efficiently. Neural Computation. 10:1997;251-276.
    • (1997) Neural Computation , vol.10 , pp. 251-276
    • Amari, S.1
  • 5
    • 0031277419 scopus 로고    scopus 로고
    • Stability analysis of learning algorithms for blind source separation
    • Amari S., Chen T.-P., Cichocki A. Stability analysis of learning algorithms for blind source separation. Neural Networks. 10:1997;1345-1351.
    • (1997) Neural Networks , vol.10 , pp. 1345-1351
    • Amari, S.1    Chen, T.-P.2    Cichocki, A.3
  • 6
    • 0344297650 scopus 로고    scopus 로고
    • Nonholonomic orthogonal constraints in adaptive blind source separation
    • submitted
    • Amari S., Chen T.-P., & Cichocki A. (1998) Nonholonomic orthogonal constraints in adaptive blind source separation. Neural Computation, submitted.
    • (1998) Neural Computation
    • Amari, S.1    Chen, T.-P.2    Cichocki, A.3
  • 8
    • 0002412868 scopus 로고
    • Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems
    • Brockett R.W. Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems. Linear Algebra and its Applications. 146:1991;79-91.
    • (1991) Linear Algebra and its Applications , vol.146 , pp. 79-91
    • Brockett, R.W.1
  • 9
    • 0031672308 scopus 로고    scopus 로고
    • Global convergence of Oja's subspace algorithm for principal component extraction
    • Chen T.-P., Hua Y., Yan W.Y. Global convergence of Oja's subspace algorithm for principal component extraction. IEEE Transactions on Neural Networks. 9:1998;58-67.
    • (1998) IEEE Transactions on Neural Networks , vol.9 , pp. 58-67
    • Chen, T.-P.1    Hua, Y.2    Yan, W.Y.3
  • 10
    • 0031125693 scopus 로고    scopus 로고
    • Modified Oja's algorithms for principal subspace and minor subspace extraction
    • Chen T.-P. Modified Oja's algorithms for principal subspace and minor subspace extraction. Neural Processing Letters. 5:1997;105-110.
    • (1997) Neural Processing Letters , vol.5 , pp. 105-110
    • Chen, T.-P.1
  • 11
    • 0000767211 scopus 로고
    • Gradient systems in view of information geometry
    • Fujiwara A., Amari S. Gradient systems in view of information geometry. Physica D. 80:1995;317-327.
    • (1995) Physica D , vol.80 , pp. 317-327
    • Fujiwara, A.1    Amari, S.2
  • 13
    • 0000729409 scopus 로고
    • Completely integrable gradient systems on the manifold of Gaussian and multinomial distributions
    • Nakamura Y. Completely integrable gradient systems on the manifold of Gaussian and multinomial distributions. Japan Journal of Applied and Industrial Mathematics. 10:1993;179-189.
    • (1993) Japan Journal of Applied and Industrial Mathematics , vol.10 , pp. 179-189
    • Nakamura, Y.1
  • 14
    • 0020464111 scopus 로고
    • A simplified neuron model as a principal component analyzer
    • Oja E. A simplified neuron model as a principal component analyzer. J. Math. Biology. 15:1982;267-273.
    • (1982) J. Math. Biology , vol.15 , pp. 267-273
    • Oja, E.1
  • 15
    • 0022013023 scopus 로고
    • On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix
    • Oja E., Karhunen J. On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix. Journal of Mathematical Analysis and Applications. 106:1985;69-84.
    • (1985) Journal of Mathematical Analysis and Applications , vol.106 , pp. 69-84
    • Oja, E.1    Karhunen, J.2
  • 16
    • 0026954958 scopus 로고
    • Principal components, minor components, and linear neural networks
    • Oja E. Principal components, minor components, and linear neural networks. Neural Networks. 5:1992;927-935.
    • (1992) Neural Networks , vol.5 , pp. 927-935
    • Oja, E.1
  • 17
    • 0024883243 scopus 로고
    • Optimal unsupervised learning in a single-layer linear feedforward network
    • Sanger T.D. Optimal unsupervised learning in a single-layer linear feedforward network. Neural Networks. 2:1989;459-573.
    • (1989) Neural Networks , vol.2 , pp. 459-573
    • Sanger, T.D.1
  • 18
    • 0026745682 scopus 로고
    • Modified Hebbian learning for curve and surface fitting
    • Xu L., Oja E., Suen C. Modified Hebbian learning for curve and surface fitting. Neural Networks. 5:1992;441-457.
    • (1992) Neural Networks , vol.5 , pp. 441-457
    • Xu, L.1    Oja, E.2    Suen, C.3
  • 19
    • 0027206958 scopus 로고
    • Least mean square error recognition principle for self organizing neural nets
    • Xu L. Least mean square error recognition principle for self organizing neural nets. Neural Networks. 6:1993;627-648.
    • (1993) Neural Networks , vol.6 , pp. 627-648
    • Xu, L.1
  • 20


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.