메뉴 건너뛰기




Volumn 4, Issue 153, 2012, Pages

An RNA profile identifies two subsets of multiple sclerosis patients differing in disease activity

Author keywords

[No Author keywords available]

Indexed keywords

BETA INTERFERON; GLATIRAMER; RNA; TRANSCRIPTOME;

EID: 84866871850     PISSN: 19466234     EISSN: 19466242     Source Type: Journal    
DOI: 10.1126/scitranslmed.3004186     Document Type: Article
Times cited : (52)

References (26)
  • 1
    • 33749059726 scopus 로고    scopus 로고
    • The neurobiology of multiple sclerosis: Genes, inflammation, and neurodegeneration
    • S. L. Hauser, J. R. Oksenberg, The neurobiology of multiple sclerosis: Genes, inflammation, and neurodegeneration. Neuron 52, 61-76 (2006).
    • (2006) Neuron , vol.52 , pp. 61-76
    • Hauser, S.L.1    Oksenberg, J.R.2
  • 7
    • 34249891600 scopus 로고    scopus 로고
    • Gene expression changes in peripheral blood mononuclear cells from multiple sclerosis patients undergoing β-interferon therapy
    • M. K. Singh, T. F. Scott, W. A. LaFramboise, F. Z. Hu, J. C. Post, G. D. Ehrlich, Gene expression changes in peripheral blood mononuclear cells from multiple sclerosis patients undergoing β-interferon therapy. J. Neurol. Sci. 258, 52-59 (2007).
    • (2007) J. Neurol. Sci. , vol.258 , pp. 52-59
    • Singh, M.K.1    Scott, T.F.2    LaFramboise, W.A.3    Hu, F.Z.4    Post, J.C.5    Ehrlich, G.D.6
  • 8
    • 79953238968 scopus 로고    scopus 로고
    • Sieving treatment biomarkers from blood gene-expression profiles: A pharmacogenomic update on two types of multiple sclerosis therapy
    • R. H. Goertsches, U. K. Zettl, M. Hecker, Sieving treatment biomarkers from blood gene-expression profiles: A pharmacogenomic update on two types of multiple sclerosis therapy. Pharmacogenomics 12, 423-432 (2011).
    • (2011) Pharmacogenomics , vol.12 , pp. 423-432
    • Goertsches, R.H.1    Zettl, U.K.2    Hecker, M.3
  • 10
    • 79955943425 scopus 로고    scopus 로고
    • Excessive biologic response to IFNβ is associated with poor treatment response in patients with multiple sclerosis
    • R. A. Rudick, M. R. Rani, Y. Xu, J. C. Lee, J. Na, J. Shrock, A. Josyula, E. Fisher, R. M. Ransohoff, Excessive biologic response to IFNβ is associated with poor treatment response in patients with multiple sclerosis. PLoS One 6, e19262 (2011).
    • (2011) PLoS One , vol.6
    • Rudick, R.A.1    Rani, M.R.2    Xu, Y.3    Lee, J.C.4    Na, J.5    Shrock, J.6    Josyula, A.7    Fisher, E.8    Ransohoff, R.M.9
  • 13
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • T. Evgeniou, M. Pontil, T. Poggio, Regularization networks and support vector machines. Adv. Comput. Math. 13, 1-50 (2000).
    • (2000) Adv. Comput. Math. , vol.13 , pp. 1-50
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 17
    • 33748516665 scopus 로고    scopus 로고
    • A model for the comprehensive investigation of a chronic autoimmune disease: The multiple sclerosis CLIMB study
    • S. A. Gauthier, B. I. Glanz, M. Mandel, H. L. Weiner, A model for the comprehensive investigation of a chronic autoimmune disease: The multiple sclerosis CLIMB study. Autoimmun. Rev. 5, 532-536 (2006).
    • (2006) Autoimmun. Rev. , vol.5 , pp. 532-536
    • Gauthier, S.A.1    Glanz, B.I.2    Mandel, M.3    Weiner, H.L.4
  • 19
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. D. Lee, H. S. Seung, Learning the parts of objects by non-negative matrix factorization. Nature 401, 788- 791 (1999).
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 20
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • D. D. Lee, H. S. Seung, Algorithms for non-negative matrix factorization. Adv. Neural Inf. Process. Syst. 13, 556-562 (2001).
    • (2001) Adv. Neural Inf. Process. Syst. , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 21
    • 33644872577 scopus 로고    scopus 로고
    • Limma: Linear models for microarray data
    • R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, W. Huber, Eds. Springer, New York
    • G. K. Smyth, Limma: Linear models for microarray data, in Bioinformatics and Computational Biology Solutions using R and Bioconductor, R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, W. Huber, Eds. (Springer, New York, 2005), pp. 397-420.
    • (2005) Bioinformatics and Computational Biology Solutions Using R and Bioconductor , pp. 397-420
    • Smyth, G.K.1
  • 22
    • 71849098862 scopus 로고    scopus 로고
    • Integration of genetic risk factors into a clinical algorithm for multiple sclerosis susceptibility: A weighted genetic risk score
    • Steering Committee of the BENEFIT Study; Steering Committee of the BEYOND Study; Steering Committee of the LTF Study; Steering Committee of the CCR1 Study
    • P. L. De Jager, L. B. Chibnik, J. Cui, J. Reischl, S. Lehr, K. C. Simon, C. Aubin, D. Bauer, J. F. Heubach, R. Sandbrink, M. Tyblova, P. Lelkova; Steering Committee of the BENEFIT Study; Steering Committee of the BEYOND Study; Steering Committee of the LTF Study; Steering Committee of the CCR1 Study; E. Havrdova, C. Pohl, D. Horakova, A. Ascherio, D. A. Hafler, E. W. Karlson, Integration of genetic risk factors into a clinical algorithm for multiple sclerosis susceptibility: A weighted genetic risk score. Lancet Neurol. 8, 1111-1119 (2009).
    • (2009) Lancet Neurol , vol.8 , pp. 1111-1119
    • De Jager, P.L.1    Chibnik, L.B.2    Cui, J.3    Reischl, J.4    Lehr, S.5    Simon, K.C.6    Aubin, C.7    Bauer, D.8    Heubach, J.F.9    Sandbrink, R.10    Tyblova, M.11    Lelkova, P.12    Havrdova, E.13    Pohl, C.14    Horakova, D.15    Ascherio, A.16    Hafler, D.A.17    Karlson, E.W.18
  • 23
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • C. Fraley, A. E. Raftery, Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc. 97, 611-631 (2002).
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.