메뉴 건너뛰기




Volumn , Issue , 2012, Pages

Gene regulatory network model identification using artificial bee colony and swarm intelligence

Author keywords

[No Author keywords available]

Indexed keywords

ABC ALGORITHMS; ARTIFICIAL BEE COLONIES; COMPLEX STRUCTURE; COUPLED DIFFERENTIAL EQUATIONS; EVOLUTIONARY ALGORITHMS (EAS); GENE REGULATORY NETWORK MODEL; GENE REGULATORY NETWORKS; INTERACTION MECHANISMS; MEDIUM SIZE; MOLECULAR LEVELS; POWER-LAW; RANDOM TOPOLOGY; S-SYSTEMS; SEARCH SCHEME; SWARM INTELLIGENCE; UNDERLYING SYSTEMS;

EID: 84866846939     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CEC.2012.6256461     Document Type: Conference Paper
Times cited : (10)

References (28)
  • 1
    • 34548720461 scopus 로고    scopus 로고
    • Defining a standard for particle swarm optimization
    • D. Bratton and J. Kennedy. Defining a standard for particle swarm optimization. In Swarm Intelligence Symposium, pages 120-127, 2007.
    • (2007) Swarm Intelligence Symposium , pp. 120-127
    • Bratton, D.1    Kennedy, J.2
  • 2
    • 0001856084 scopus 로고
    • Optimization through evolution and recombination
    • H.J. Bremermann. Optimization through evolution and recombination. Self-organizing systems, pages 93-106, 1962.
    • (1962) Self-organizing Systems , pp. 93-106
    • Bremermann, H.J.1
  • 4
    • 84901421400 scopus 로고    scopus 로고
    • The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization
    • M. Clerc. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In Congress on Evolutionary Computation (CEC'99), volume 3, pages 1951-1957.
    • Congress on Evolutionary Computation (CEC'99) , vol.3 , pp. 1951-1957
    • Clerc, M.1
  • 7
    • 48249134043 scopus 로고    scopus 로고
    • Evolution of evolvability in gene regulatory networks
    • A. Crombach and P. Hogeweg. Evolution of evolvability in gene regulatory networks. PLoS computational biology, 4(7):e1000112, 2008.
    • (2008) PLoS Computational Biology , vol.4 , Issue.7
    • Crombach, A.1    Hogeweg, P.2
  • 9
    • 84929024508 scopus 로고    scopus 로고
    • A Fitness Granulation Approach for Large-Scale Structural Design Optimization
    • Raymond Chiong, Thomas Weise, and Zbigniew Michalewicz, editors, Springer-Verlag
    • M. Davarynejad, J. Vrancken, J. van den Berg, and C.A. Coello Coello. A Fitness Granulation Approach for Large-Scale Structural Design Optimization. In Raymond Chiong, Thomas Weise, and Zbigniew Michalewicz, editors, Variants of Evolutionary Algorithms for Real-World Applications, pages 245-280. Springer-Verlag, 2012.
    • (2012) Variants of Evolutionary Algorithms for Real-World Applications , pp. 245-280
    • Davarynejad, M.1    Vrancken, J.2    Van Den Berg, J.3    Coello Coello, C.A.4
  • 10
    • 0000991259 scopus 로고
    • Simulated binary crossover for continuous search space
    • K. Deb and R.B. Agrawal. Simulated binary crossover for continuous search space. Complex systems, 9(2):115-148, 1995.
    • (1995) Complex Systems , vol.9 , Issue.2 , pp. 115-148
    • Deb, K.1    Agrawal, R.B.2
  • 14
    • 67349273050 scopus 로고    scopus 로고
    • A comparative study of artificial bee colony algorithm
    • D. Karaboga and B. Akay. A comparative study of artificial bee colony algorithm. Applied Mathematics and Computation, 214(1):108-132, 2009.
    • (2009) Applied Mathematics and Computation , vol.214 , Issue.1 , pp. 108-132
    • Karaboga, D.1    Akay, B.2
  • 16
    • 0037461033 scopus 로고    scopus 로고
    • Dynamic modeling of genetic networks using genetic algorithm and s-system
    • S. Kikuchi, D. Tominaga, M. Arita, K. Takahashi, and M. Tomita. Dynamic modeling of genetic networks using genetic algorithm and s-system. Bioinformatics, 19(5):643-650, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.5 , pp. 643-650
    • Kikuchi, S.1    Tominaga, D.2    Arita, M.3    Takahashi, K.4    Tomita, M.5
  • 19
    • 80052595485 scopus 로고    scopus 로고
    • An adaptive gapso approach with gene clustering to infer s-system models of gene regulatory networks
    • W.P. Lee and Y.T. Hsiao. An adaptive gapso approach with gene clustering to infer s-system models of gene regulatory networks. The Computer Journal, 54(9):1449-1464, 2011.
    • (2011) The Computer Journal , vol.54 , Issue.9 , pp. 1449-1464
    • Lee, W.P.1    Hsiao, Y.T.2
  • 20
    • 67449095889 scopus 로고    scopus 로고
    • Computational methods for discovering gene networks from expression data
    • W.P. Lee and W.S. Tzou. Computational methods for discovering gene networks from expression data. Briefings in bioinformatics, 10(4):408-423, 2009.
    • (2009) Briefings in Bioinformatics , vol.10 , Issue.4 , pp. 408-423
    • Lee, W.P.1    Tzou, W.S.2
  • 23
    • 80855128255 scopus 로고    scopus 로고
    • Algorithms in nature: The convergence of systems biology and computational thinking
    • S. Navlakha and Z. Bar-Joseph. Algorithms in nature: the convergence of systems biology and computational thinking. Molecular Systems Biology, 7(1), 2011.
    • (2011) Molecular Systems Biology , vol.7 , Issue.1
    • Navlakha, S.1    Bar-Joseph, Z.2
  • 25
    • 77649176945 scopus 로고    scopus 로고
    • Comparison of evolutionary algorithms in gene regulatory network model inference
    • A. Sirbu, H. Ruskin, and M. Crane. Comparison of evolutionary algorithms in gene regulatory network model inference. BMC Bioinformatics, 11(1):59, 2010.
    • (2010) BMC Bioinformatics , vol.11 , Issue.1 , pp. 59
    • Sirbu, A.1    Ruskin, H.2    Crane, M.3
  • 28
    • 16344385431 scopus 로고    scopus 로고
    • Evolutionary optimization with data collocation for reverse engineering of biological networks
    • K.Y. Tsai and F.S. Wang. Evolutionary optimization with data collocation for reverse engineering of biological networks. Bioinformatics, 21(7):1180, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.7 , pp. 1180
    • Tsai, K.Y.1    Wang, F.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.