-
1
-
-
50649111625
-
Systems biology: Reverse engineering the cell
-
Ingolia, N.T. andWeissman, J.S. (2008) Systems biology: Reverse engineering the cell. Nature, 454, 1059-1062.
-
(2008)
Nature
, vol.454
, pp. 1059-1062
-
-
Ingolia, N.T.1
Weissman, J.S.2
-
2
-
-
52649087274
-
Modelling and analysis of gene regulatory networks
-
Karlebach, G. and Shamir, R. (2008) Modelling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell Biol., 9, 770-780.
-
(2008)
Nat. Rev. Mol. Cell Biol.
, vol.9
, pp. 770-780
-
-
Karlebach, G.1
Shamir, R.2
-
3
-
-
0036207347
-
Modeling and simulation of genetic regulatory systems: A literature review
-
deJong, H. (2002) Modeling and simulation of genetic regulatory systems: A literature review. J. Comput. Biol., 9, 67-103.
-
(2002)
J. Comput. Biol.
, vol.9
, pp. 67-103
-
-
DeJong, H.1
-
4
-
-
67449095889
-
Computational methods for discovering gene networks from expression data
-
Lee, W.-P. and Tzou, W.-S. (2009) Computational methods for discovering gene networks from expression data. Brief Bioinf., 10, 408-423.
-
(2009)
Brief Bioinf.
, vol.10
, pp. 408-423
-
-
Lee, W.-P.1
Tzou, W.-S.2
-
6
-
-
84919713045
-
Evolutionary optimization versus particle swarm optimization: Philosophy and performance difference
-
San Diego, CA, March 25-27, Springer, Berlin
-
Angeline, P.J. (1998) Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy And Performance Difference. Proc. Int. Conf. Evolutionary Programming, San Diego, CA, March 25-27, pp. 601-610. Springer, Berlin.
-
(1998)
Proc. Int. Conf. Evolutionary Programming
, pp. 601-610
-
-
Angeline, P.J.1
-
7
-
-
84947807745
-
Comparison between genetic algorithms and particle swarm optimization
-
Springer, Berlin
-
Eberhart, R.C. and Shi,Y. (1998) Comparison Between Genetic Algorithms and Particle Swarm Optimization. Proc. Int. Conf. Evolutionary Programming, San Diego, CA, March 25-27, pp. 611-616. Springer, Berlin.
-
(1998)
Proc. Int. Conf. Evolutionary Programming, San Diego, CA, March 25-27
, pp. 611-616
-
-
Eberhart, R.C.1
Shi, Y.2
-
8
-
-
32444438839
-
Breeding swarms: A GA/PSO hybrid
-
Washington DC, June 25-29, ACM Press, MA
-
Settles, M. and Soule, T. (2005) Breeding Swarms: A GA/PSO Hybrid. Proc. Genetic and Evolutionary Computation Conf., Washington DC, June 25-29, pp. 161-168. ACM Press, MA.
-
(2005)
Proc. Genetic and Evolutionary Computation Conf.
, pp. 161-168
-
-
Settles, M.1
Soule, T.2
-
9
-
-
34047199048
-
Genetical swarm optimization: Self-adaptive hybrid evolutionary algorithm for electromagnetics
-
Grimaccia, F., Mussetta, M. and Zich, R. (2006) Genetical swarm optimization: Self-adaptive hybrid evolutionary algorithm for electromagnetics. IEEE Trans. Antennas Propag., 55, 781-785.
-
(2006)
IEEE Trans. Antennas Propag.
, vol.55
, pp. 781-785
-
-
Grimaccia, F.1
Mussetta, M.2
Zich, R.3
-
10
-
-
77749286227
-
Strength pareto particle swarm optimization and hybrid EA-PSO for multiobjective optimization
-
Elhossini, A., Areibi, S. and Dony, R. (2010) Strength pareto particle swarm optimization and hybrid EA-PSO for multiobjective optimization. Evol. Comput., 18, 127-156.
-
(2010)
Evol. Comput.
, vol.18
, pp. 127-156
-
-
Elhossini, A.1
Areibi, S.2
Dony, R.3
-
11
-
-
32444432616
-
Inference of gene regulatory networks using s-system and differential evolution
-
Washington DC, June 25-29, ACM Press, MA
-
Noman, N. and Iba, H. (2005) Inference of Gene Regulatory Networks Using S-system and Differential Evolution. Proc. Genetic and Evolutionary Computation Conf., Washington DC, June 25-29, pp. 439-446. ACM Press, MA.
-
(2005)
Proc. Genetic and Evolutionary Computation Conf.
, pp. 439-446
-
-
Noman, N.1
Iba, H.2
-
12
-
-
38649104174
-
A clustering-based approach for inferring recurrent neural networks as gene regulatory networks
-
Lee, W.-P. and Yang, K.-C. (2008) A clustering-based approach for inferring recurrent neural networks as gene regulatory networks. Neurocomputing, 71, 600-610.
-
(2008)
Neurocomputing
, vol.71
, pp. 600-610
-
-
Lee, W.-P.1
Yang, K.-C.2
-
13
-
-
36249014245
-
An intelligent two-stage evolutionary algorithm for dynamic pathway identification from gene expression profiles
-
Ho, S.-Y., Hsieh, C.-H., Yu, C.-F. and Huang, H.-L. (2007) An intelligent two-stage evolutionary algorithm for dynamic pathway identification from gene expression profiles. IEEE/ACM Trans. Comput. Biol. Bioinf., 4, 648-660.
-
(2007)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.4
, pp. 648-660
-
-
Ho, S.-Y.1
Hsieh, C.-H.2
Yu, C.-F.3
Huang, H.-L.4
-
15
-
-
0025489075
-
The self-organizing map
-
Kohonen, T. (1990) The self-organizing map. Proc. IEEE, 78, 1464-1480.
-
(1990)
Proc IEEE
, vol.78
, pp. 1464-1480
-
-
Kohonen, T.1
-
16
-
-
0024700097
-
A theory for multiresolution signal decomposition: Thewavelet representation
-
Mallat, S. (1989)A theory for multiresolution signal decomposition: Thewavelet representation. IEEE Trans. Pattern Anal. Mach. Intell., 11, 674-693.
-
(1989)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.11
, pp. 674-693
-
-
Mallat, S.1
-
17
-
-
0025482241
-
The wavelet transform, time-frequency localization and signal analysis
-
Daubechies, I. (1990) The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory, 36, 961-1005.
-
(1990)
IEEE Trans. Inf. Theory
, vol.36
, pp. 961-1005
-
-
Daubechies, I.1
-
18
-
-
0000984146
-
Evolutionary modeling of systems of ordinary differential equations with genetic programming
-
Cao, H., Kang, L. and Chen, Y. (2000) Evolutionary modeling of systems of ordinary differential equations with genetic programming. Genet. Program. Evol. Mach., 1, 309-337.
-
(2000)
Genet. Program. Evol. Mach.
, vol.1
, pp. 309-337
-
-
Cao, H.1
Kang, L.2
Chen, Y.3
-
19
-
-
33746895132
-
Parameter reconstruction for biochemical networks using interval analysis
-
Tucker,W. and Moulton, V. (2006) Parameter reconstruction for biochemical networks using interval analysis. Reliab. Comput., 12, 389-402.
-
(2006)
Reliab. Comput.
, vol.12
, pp. 389-402
-
-
Tucker, W.1
Moulton, V.2
-
20
-
-
0035958144
-
Hybrid differential evolution for problems of kinetic parameter estimation and dynamic optimization of an ethanol fermentation process
-
Wang, F.-S. (2001) Hybrid differential evolution for problems of kinetic parameter estimation and dynamic optimization of an ethanol fermentation process. Chem. Eng. Sci., 40, 2876-2855.
-
(2001)
Chem. Eng. Sci.
, vol.40
, pp. 2876-2855
-
-
Wang, F.-S.1
-
21
-
-
0030002954
-
Rules for coupled expression of regulator and effector genes in inducible circuits
-
Hlavacck, W.S. and Savageau, M.A. (1996) Rules for coupled expression of regulator and effector genes in inducible circuits. J. Mol. Biol., 255, 121-139.
-
(1996)
J. Mol. Biol.
, vol.255
, pp. 121-139
-
-
Hlavacck, W.S.1
Savageau, M.A.2
-
22
-
-
0036772999
-
Genexp: A genetic network simulation environment
-
Vu, T. and Vohradsky, J. (2002) Genexp: A genetic network simulation environment. Bioinformatics, 18, 1400-1401.
-
(2002)
Bioinformatics
, vol.18
, pp. 1400-1401
-
-
Vu, T.1
Vohradsky, J.2
-
23
-
-
12244300301
-
Regularization and noise injection for improving genetic network models
-
In Zhang,W. and Shmulevich, I. (eds), Kluwer, Dordrecht
-
van Someren, E.P., Wessels, L., Reinders, M. and Backer, E. (2002) Regularization and Noise Injection for Improving Genetic Network Models. In Zhang,W. and Shmulevich, I. (eds), Computational and Statistical Approaches to Genomics, pp. 211- 226. Kluwer, Dordrecht.
-
(2002)
Computational and Statistical Approaches to Genomics
, pp. 211-226
-
-
Van Someren, E.P.1
Wessels, L.2
Reinders, M.3
Backer, E.4
-
24
-
-
0001740650
-
Training with noise is equivalent to Tikhonov regularization
-
Bishop, C.M. (1994) Training with noise is equivalent to Tikhonov regularization. Neural Comput., 7, 108-116.
-
(1994)
Neural Comput.
, vol.7
, pp. 108-116
-
-
Bishop, C.M.1
-
25
-
-
0031915896
-
Large-scale temporal gene expression mapping of central nervous system development
-
Wen, X. et al. (1998) Large-scale temporal gene expression mapping of central nervous system development. Proc. Natl. Acad. Sci. USA, 95, 334-339.
-
(1998)
Proc. Natl. Acad. Sci. USA
, vol.95
, pp. 334-339
-
-
Wen, X.1
|