메뉴 건너뛰기




Volumn 54, Issue 9, 2011, Pages 1449-1464

An adaptive GA - PSO approach with gene clustering to infer S-system models of gene regulatory networks

Author keywords

gene clustering; gene regulatory network; genetic algorithm; particle swarm optimization; S system; systems biology

Indexed keywords

GENE CLUSTERING; GENE REGULATORY NETWORK; PARTICLE SWARM; S-SYSTEMS; SYSTEMS BIOLOGY;

EID: 80052595485     PISSN: 00104620     EISSN: 14602067     Source Type: Journal    
DOI: 10.1093/comjnl/bxr038     Document Type: Article
Times cited : (13)

References (25)
  • 1
    • 50649111625 scopus 로고    scopus 로고
    • Systems biology: Reverse engineering the cell
    • Ingolia, N.T. andWeissman, J.S. (2008) Systems biology: Reverse engineering the cell. Nature, 454, 1059-1062.
    • (2008) Nature , vol.454 , pp. 1059-1062
    • Ingolia, N.T.1    Weissman, J.S.2
  • 2
    • 52649087274 scopus 로고    scopus 로고
    • Modelling and analysis of gene regulatory networks
    • Karlebach, G. and Shamir, R. (2008) Modelling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell Biol., 9, 770-780.
    • (2008) Nat. Rev. Mol. Cell Biol. , vol.9 , pp. 770-780
    • Karlebach, G.1    Shamir, R.2
  • 3
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: A literature review
    • deJong, H. (2002) Modeling and simulation of genetic regulatory systems: A literature review. J. Comput. Biol., 9, 67-103.
    • (2002) J. Comput. Biol. , vol.9 , pp. 67-103
    • DeJong, H.1
  • 4
    • 67449095889 scopus 로고    scopus 로고
    • Computational methods for discovering gene networks from expression data
    • Lee, W.-P. and Tzou, W.-S. (2009) Computational methods for discovering gene networks from expression data. Brief Bioinf., 10, 408-423.
    • (2009) Brief Bioinf. , vol.10 , pp. 408-423
    • Lee, W.-P.1    Tzou, W.-S.2
  • 6
    • 84919713045 scopus 로고    scopus 로고
    • Evolutionary optimization versus particle swarm optimization: Philosophy and performance difference
    • San Diego, CA, March 25-27, Springer, Berlin
    • Angeline, P.J. (1998) Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy And Performance Difference. Proc. Int. Conf. Evolutionary Programming, San Diego, CA, March 25-27, pp. 601-610. Springer, Berlin.
    • (1998) Proc. Int. Conf. Evolutionary Programming , pp. 601-610
    • Angeline, P.J.1
  • 8
    • 32444438839 scopus 로고    scopus 로고
    • Breeding swarms: A GA/PSO hybrid
    • Washington DC, June 25-29, ACM Press, MA
    • Settles, M. and Soule, T. (2005) Breeding Swarms: A GA/PSO Hybrid. Proc. Genetic and Evolutionary Computation Conf., Washington DC, June 25-29, pp. 161-168. ACM Press, MA.
    • (2005) Proc. Genetic and Evolutionary Computation Conf. , pp. 161-168
    • Settles, M.1    Soule, T.2
  • 9
    • 34047199048 scopus 로고    scopus 로고
    • Genetical swarm optimization: Self-adaptive hybrid evolutionary algorithm for electromagnetics
    • Grimaccia, F., Mussetta, M. and Zich, R. (2006) Genetical swarm optimization: Self-adaptive hybrid evolutionary algorithm for electromagnetics. IEEE Trans. Antennas Propag., 55, 781-785.
    • (2006) IEEE Trans. Antennas Propag. , vol.55 , pp. 781-785
    • Grimaccia, F.1    Mussetta, M.2    Zich, R.3
  • 10
    • 77749286227 scopus 로고    scopus 로고
    • Strength pareto particle swarm optimization and hybrid EA-PSO for multiobjective optimization
    • Elhossini, A., Areibi, S. and Dony, R. (2010) Strength pareto particle swarm optimization and hybrid EA-PSO for multiobjective optimization. Evol. Comput., 18, 127-156.
    • (2010) Evol. Comput. , vol.18 , pp. 127-156
    • Elhossini, A.1    Areibi, S.2    Dony, R.3
  • 11
    • 32444432616 scopus 로고    scopus 로고
    • Inference of gene regulatory networks using s-system and differential evolution
    • Washington DC, June 25-29, ACM Press, MA
    • Noman, N. and Iba, H. (2005) Inference of Gene Regulatory Networks Using S-system and Differential Evolution. Proc. Genetic and Evolutionary Computation Conf., Washington DC, June 25-29, pp. 439-446. ACM Press, MA.
    • (2005) Proc. Genetic and Evolutionary Computation Conf. , pp. 439-446
    • Noman, N.1    Iba, H.2
  • 12
    • 38649104174 scopus 로고    scopus 로고
    • A clustering-based approach for inferring recurrent neural networks as gene regulatory networks
    • Lee, W.-P. and Yang, K.-C. (2008) A clustering-based approach for inferring recurrent neural networks as gene regulatory networks. Neurocomputing, 71, 600-610.
    • (2008) Neurocomputing , vol.71 , pp. 600-610
    • Lee, W.-P.1    Yang, K.-C.2
  • 13
    • 36249014245 scopus 로고    scopus 로고
    • An intelligent two-stage evolutionary algorithm for dynamic pathway identification from gene expression profiles
    • Ho, S.-Y., Hsieh, C.-H., Yu, C.-F. and Huang, H.-L. (2007) An intelligent two-stage evolutionary algorithm for dynamic pathway identification from gene expression profiles. IEEE/ACM Trans. Comput. Biol. Bioinf., 4, 648-660.
    • (2007) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.4 , pp. 648-660
    • Ho, S.-Y.1    Hsieh, C.-H.2    Yu, C.-F.3    Huang, H.-L.4
  • 15
    • 0025489075 scopus 로고
    • The self-organizing map
    • Kohonen, T. (1990) The self-organizing map. Proc. IEEE, 78, 1464-1480.
    • (1990) Proc IEEE , vol.78 , pp. 1464-1480
    • Kohonen, T.1
  • 16
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: Thewavelet representation
    • Mallat, S. (1989)A theory for multiresolution signal decomposition: Thewavelet representation. IEEE Trans. Pattern Anal. Mach. Intell., 11, 674-693.
    • (1989) IEEE Trans. Pattern Anal. Mach. Intell. , vol.11 , pp. 674-693
    • Mallat, S.1
  • 17
    • 0025482241 scopus 로고
    • The wavelet transform, time-frequency localization and signal analysis
    • Daubechies, I. (1990) The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory, 36, 961-1005.
    • (1990) IEEE Trans. Inf. Theory , vol.36 , pp. 961-1005
    • Daubechies, I.1
  • 18
    • 0000984146 scopus 로고    scopus 로고
    • Evolutionary modeling of systems of ordinary differential equations with genetic programming
    • Cao, H., Kang, L. and Chen, Y. (2000) Evolutionary modeling of systems of ordinary differential equations with genetic programming. Genet. Program. Evol. Mach., 1, 309-337.
    • (2000) Genet. Program. Evol. Mach. , vol.1 , pp. 309-337
    • Cao, H.1    Kang, L.2    Chen, Y.3
  • 19
    • 33746895132 scopus 로고    scopus 로고
    • Parameter reconstruction for biochemical networks using interval analysis
    • Tucker,W. and Moulton, V. (2006) Parameter reconstruction for biochemical networks using interval analysis. Reliab. Comput., 12, 389-402.
    • (2006) Reliab. Comput. , vol.12 , pp. 389-402
    • Tucker, W.1    Moulton, V.2
  • 20
    • 0035958144 scopus 로고    scopus 로고
    • Hybrid differential evolution for problems of kinetic parameter estimation and dynamic optimization of an ethanol fermentation process
    • Wang, F.-S. (2001) Hybrid differential evolution for problems of kinetic parameter estimation and dynamic optimization of an ethanol fermentation process. Chem. Eng. Sci., 40, 2876-2855.
    • (2001) Chem. Eng. Sci. , vol.40 , pp. 2876-2855
    • Wang, F.-S.1
  • 21
    • 0030002954 scopus 로고    scopus 로고
    • Rules for coupled expression of regulator and effector genes in inducible circuits
    • Hlavacck, W.S. and Savageau, M.A. (1996) Rules for coupled expression of regulator and effector genes in inducible circuits. J. Mol. Biol., 255, 121-139.
    • (1996) J. Mol. Biol. , vol.255 , pp. 121-139
    • Hlavacck, W.S.1    Savageau, M.A.2
  • 22
    • 0036772999 scopus 로고    scopus 로고
    • Genexp: A genetic network simulation environment
    • Vu, T. and Vohradsky, J. (2002) Genexp: A genetic network simulation environment. Bioinformatics, 18, 1400-1401.
    • (2002) Bioinformatics , vol.18 , pp. 1400-1401
    • Vu, T.1    Vohradsky, J.2
  • 23
    • 12244300301 scopus 로고    scopus 로고
    • Regularization and noise injection for improving genetic network models
    • In Zhang,W. and Shmulevich, I. (eds), Kluwer, Dordrecht
    • van Someren, E.P., Wessels, L., Reinders, M. and Backer, E. (2002) Regularization and Noise Injection for Improving Genetic Network Models. In Zhang,W. and Shmulevich, I. (eds), Computational and Statistical Approaches to Genomics, pp. 211- 226. Kluwer, Dordrecht.
    • (2002) Computational and Statistical Approaches to Genomics , pp. 211-226
    • Van Someren, E.P.1    Wessels, L.2    Reinders, M.3    Backer, E.4
  • 24
    • 0001740650 scopus 로고
    • Training with noise is equivalent to Tikhonov regularization
    • Bishop, C.M. (1994) Training with noise is equivalent to Tikhonov regularization. Neural Comput., 7, 108-116.
    • (1994) Neural Comput. , vol.7 , pp. 108-116
    • Bishop, C.M.1
  • 25
    • 0031915896 scopus 로고    scopus 로고
    • Large-scale temporal gene expression mapping of central nervous system development
    • Wen, X. et al. (1998) Large-scale temporal gene expression mapping of central nervous system development. Proc. Natl. Acad. Sci. USA, 95, 334-339.
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 334-339
    • Wen, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.