메뉴 건너뛰기




Volumn , Issue , 2010, Pages 197-225

Weights direct determination of feedforward neural networks without iterative BP-training

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84866712461     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.4018/978-1-61520-757-2.ch010     Document Type: Chapter
Times cited : (18)

References (46)
  • 1
    • 84900655457 scopus 로고    scopus 로고
    • The application and compare of training algorithms in matlab 6.0's neural network toolbox
    • Chen, Y., Wang, R., & Lin, H. (2002). The application and compare of training algorithms in MATLAB 6.0's neural network toolbox. Computer and Information Technology, 3, 1-6/18.
    • (2002) Computer and Information Technology , vol.3 , Issue.1-6 , pp. 18
    • Chen, Y.1    Wang, R.2    Lin, H.3
  • 2
    • 0028425156 scopus 로고
    • An iterative method for training multilayer networks with threshold function
    • doi, 10.1109/72.286926
    • Corwin, E. M., Logar, A. M., & Oldham, W. J. B. (1994). An iterative method for training multilayer networks with threshold function. IEEE Transactions on Neural Networks, 5, 507-508. doi:10.1109/72.286926
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 507-508
    • Corwin, E.M.1    Logar, A.M.2    Oldham, W.J.B.3
  • 4
    • 4544280095 scopus 로고    scopus 로고
    • Lambda;-pdf and gegenbauer polynomial approximation for dynamic response problems of random structures
    • doi:10.1007/BF02486721
    • Fang, T., Leng, X., Ma, X., & Guang, M. (2004). λ-PDF and Gegenbauer polynomial approximation for dynamic response problems of random structures. Acta Mechanica Sinica, 20(3), 292-298. doi:10.1007/BF02486721
    • (2004) Acta Mechanica Sinica , vol.20 , Issue.3 , pp. 292-298
    • Fang, T.1    Leng, X.2    Ma, X.3    Guang, M.4
  • 5
    • 0035264159 scopus 로고    scopus 로고
    • Comparative study on fast learning algorithms of bp networks
    • Gao, X., & Cong, S. (2001). Comparative study on fast learning algorithms of BP networks. Control and Decision, 16(2), 167-171.
    • (2001) Control and Decision , vol.16 , Issue.2 , pp. 167-171
    • Gao, X.1    Cong, S.2
  • 6
    • 0028712422 scopus 로고
    • A learning algorithm for multi-layer perceptrons with hardlimiting threshold units
    • Ermioni
    • Goodman, R. M., & Zeng, Z. (1994) A learning algorithm for multi-layer perceptrons with hardlimiting threshold units. In IEEE Workshop of Neural Networks for Signal Processing, (pp. 219-228), Ermioni.
    • (1994) IEEE Workshop of Neural Networks for Signal Processing , pp. 219-228
    • Goodman, R.M.1    Zeng, Z.2
  • 8
    • 33751424309 scopus 로고    scopus 로고
    • Neural network weight training by mutation
    • doi, 10.1016/j.compstruc.2006.08.066
    • Jenkins, W. M. (2006). Neural network weight training by mutation. Computers & Structures, 84, 2107-2112. doi:10.1016/j.compstruc.2006.08.066
    • (2006) Computers & Structures , vol.84 , pp. 2107-2112
    • Jenkins, W.M.1
  • 9
    • 0029345170 scopus 로고
    • Distributed normalisation input coding to speed up training process of bp-neural network classifier
    • doi:10.1049/el:19950854
    • Jia, J. C., & Chong, C. C. (1995). Distributed normalisation input coding to speed up training process of BP-neural network classifier. Electronics Letters, 31(15), 1267-1269. doi:10.1049/el:19950854
    • (1995) Electronics Letters , vol.31 , Issue.15 , pp. 1267-1269
    • Jia, J.C.1    Chong, C.C.2
  • 11
    • 33947149688 scopus 로고    scopus 로고
    • O(n^2)operation approximation of covariance matrix inverse in gaussian process regression based on quasi-Newton BFGS methods
    • doi, 10.1080/03610910601161298
    • Leithead, W. E., & Zhang, Y. (2007). O(N^2)operation approximation of covariance matrix inverse in Gaussian process regression based on quasi-Newton BFGS methods. Communications in Statistics Simulation and Computation, 36(2), 367-380. doi:10.1080/03610910601161298
    • (2007) Communications in Statistics Simulation and Computation , vol.36 , Issue.2 , pp. 367-380
    • Leithead, W.E.1    Zhang, Y.2
  • 12
    • 0036576279 scopus 로고    scopus 로고
    • An improved upper bound on step-size parameters of discrete-time recurrent neural networks for linear inequality and equation system
    • doi, 10.1109/TCSI.2002.1001961
    • Liang, X., & Tso, S. K. (2002). An improved upper bound on step-size parameters of discrete-time recurrent neural networks for linear inequality and equation system. IEEE Transactions on Circuits and Systems I, 49(5), 695-698. doi:10.1109/TCSI.2002.1001961
    • (2002) IEEE Transactions on Circuits and Systems I , vol.49 , Issue.5 , pp. 695-698
    • Liang, X.1    Tso, S.K.2
  • 13
  • 14
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • doi, 10.1109/MASSP.1987.1165576
    • Lippmann, R. P. (1987). An introduction to computing with neural nets. IEEE ASSP Magazine, 4(2), 4-22. doi:10.1109/MASSP.1987.1165576
    • (1987) IEEE ASSP Magazine , vol.4 , Issue.2 , pp. 4-22
    • Lippmann, R.P.1
  • 15
    • 0030121244 scopus 로고    scopus 로고
    • Advances in feedforward neural networks: Demystifying knowledge acquiring black boxes
    • doi, 10.1109/69.494162
    • Looney, C. G. (1996). Advances in feedforward neural networks: demystifying knowledge acquiring black boxes. IEEE Transactions on Knowledge and Data Engineering, 8(2), 211-226. doi:10.1109/69.494162
    • (1996) IEEE Transactions on Knowledge and Data Engineering , vol.8 , Issue.2 , pp. 211-226
    • Looney, C.G.1
  • 17
    • 4344693924 scopus 로고    scopus 로고
    • Evolving artificial neural network structures: Experimental results for biologicallyinspired adaptive mutations
    • Portland, OR
    • Miller, D. A., Arguello, R., & Greenwood, G. W. (2004). Evolving artificial neural network structures: experimental results for biologicallyinspired adaptive mutations. In Congress on Evolutionary Computation: Vol. 2 (pp. 2114-2119), Portland, OR.
    • (2004) Congress on Evolutionary Computation , vol.2 , pp. 2114-2119
    • Miller, D.A.1    Arguello, R.2    Greenwood, G.W.3
  • 19
    • 11244355069 scopus 로고    scopus 로고
    • A fast converging evolutionary neural network for the prediction of uplift capacity of suction caissons
    • Singapore
    • Pai, G. A. V. (2004). A fast converging evolutionary neural network for the prediction of uplift capacity of suction caissons. In IEEE Conference on Cybernetics and Intelligent Systems (pp. 654-659), Singapore.
    • (2004) IEEE Conference on Cybernetics and Intelligent Systems , pp. 654-659
    • Pai, G.A.V.1
  • 20
    • 67649175544 scopus 로고    scopus 로고
    • Comparison of bp algorithms in matlab nn toolbox
    • Pu, C., Sun, Z., & Zhao, S. (2006). Comparison of BP algorithms in MATLAB NN toolbox. Computer Simulation, 23(5), 142-144.
    • (2006) Computer Simulation , vol.23 , Issue.5 , pp. 142-144
    • Pu, C.1    Sun, Z.2    Zhao, S.3
  • 21
    • 62949193485 scopus 로고    scopus 로고
    • Pmsm control research based on particle swarm optimization bp neural network
    • Hangzhou
    • Ren, Y., & Zhou, L. (2008). PMSM control research based on particle swarm optimization BP neural network. In International Conference on Cyberworlds (pp. 832-836), Hangzhou.
    • (2008) International Conference on Cyberworlds , pp. 832-836
    • Ren, Y.1    Zhou, L.2
  • 23
    • 0033724101 scopus 로고    scopus 로고
    • A bp-neural network predictor model for plastic injection molding process
    • doi, 10.1016/S09240136(00)00498-2
    • Sadeghi, B. H. M. (2000). A BP-neural network predictor model for plastic injection molding process. Journal of Materials Processing Technology, 103, 411-416. doi:10.1016/S09240136(00)00498-2
    • (2000) Journal of Materials Processing Technology , vol.103 , pp. 411-416
    • Sadeghi, B.H.M.1
  • 24
    • 0027678195 scopus 로고
    • Regularized image reconstruction using svd and a neural network method for matrix inversion
    • doi, 10.1109/78.277813
    • Steriti, R. J., & Fiddy, M. A. (1993). Regularized image reconstruction using SVD and a neural network method for matrix inversion. IEEE Transactions on Signal Processing, 41(10), 3074-3077. doi:10.1109/78.277813
    • (1993) IEEE Transactions on Signal Processing , vol.41 , Issue.10 , pp. 3074-3077
    • Steriti, R.J.1    Fiddy, M.A.2
  • 25
    • 34548316867 scopus 로고    scopus 로고
    • On the improving backpropagation algorithms of the neural networks based on matlab language: A review
    • Su, G., & Deng, F. (2003). On the improving backpropagation algorithms of the neural networks based on MATLAB language: a review. Bulletin of Science and Technology, 19(2), 130-135.
    • (2003) Bulletin of Science and Technology , vol.19 , Issue.2 , pp. 130-135
    • Su, G.1    Deng, F.2
  • 26
    • 84900638335 scopus 로고
    • Neural networks for medicine: Two cases
    • New York
    • Wang, S. L., & Li, P. Y. (1991). Neural networks for medicine: two cases. In Electro International Conference (pp. 586-590), New York.
    • (1991) Electro International Conference , pp. 586-590
    • Wang, S.L.1    Li, P.Y.2
  • 29
    • 35649028356 scopus 로고    scopus 로고
    • Flutter analysis of an airfoil with bounded random parameters in incompressible flow via gegenbauer polynomial approximation
    • doi:10.1016/j.ast.2007.03.003
    • Wu, C., Zhang, H., & Fang, T. (2007). Flutter analysis of an airfoil with bounded random parameters in incompressible flow via Gegenbauer polynomial approximation. Aerospace Science and Technology, 11, 518-526. doi:10.1016/j.ast.2007.03.003
    • (2007) Aerospace Science and Technology , vol.11 , pp. 518-526
    • Wu, C.1    Zhang, H.2    Fang, T.3
  • 30
    • 0036930799 scopus 로고    scopus 로고
    • Hidden neuron pruning for multilayer perceptrons using a sensitivity measure
    • New York
    • Yeung, D. S., & Zeng, X. (2002). Hidden neuron pruning for multilayer perceptrons using a sensitivity measure. In International Conference on Machine Learning and Cybernetics (pp. 1751-1757), New York.
    • (2002) International Conference on Machine Learning and Cybernetics , pp. 1751-1757
    • Yeung, D.S.1    Zeng, X.2
  • 31
    • 0029375531 scopus 로고
    • On the local minima free condition of backpropagation learning
    • doi, 10.1109/72.410380
    • Yu, X. H., & Chen, G. A. (1995). On the local minima free condition of backpropagation learning. IEEE Transactions on Neural Networks, 6(5), 1300-1303. doi:10.1109/72.410380
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.5 , pp. 1300-1303
    • Yu, X.H.1    Chen, G.A.2
  • 32
    • 0027912094 scopus 로고
    • Acceleration of backpropagation learning using optimised learning rate and momentum
    • doi:10.1049/el:19930860
    • Yu, X. H., Chen, G. A., & Cheng, S. X. (1993). Acceleration of backpropagation learning using optimised learning rate and momentum. Electronics Letters, 29(14), 1288-1290. doi:10.1049/el:19930860
    • (1993) Electronics Letters , vol.29 , Issue.14 , pp. 1288-1290
    • Yu, X.H.1    Chen, G.A.2    Cheng, S.X.3
  • 36
    • 38649104125 scopus 로고    scopus 로고
    • Global exponential convergence and stability of wang neural network for solving online linear equations
    • doi:10.1049/el:20081928
    • Zhang, Y., & Chen, K. (2008). Global exponential convergence and stability of Wang neural network for solving online linear equations. Electronics Letters, 44(2), 145-146. doi:10.1049/el:20081928
    • (2008) Electronics Letters , vol.44 , Issue.2 , pp. 145-146
    • Zhang, Y.1    Chen, K.2
  • 37
    • 28244493362 scopus 로고    scopus 로고
    • Design and analysis of a general recurrent neural network model for time-varying matrix inversion
    • doi, 10.1109/TNN.2005.857946
    • Zhang, Y., & Ge, S. S. (2005). Design and analysis of a general recurrent neural network model for time-varying matrix inversion. IEEE Transactions on Neural Networks, 16(6), 1477-1490. doi:10.1109/TNN.2005.857946
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.6 , pp. 1477-1490
    • Zhang, Y.1    Ge, S.S.2
  • 38
    • 4844228408 scopus 로고    scopus 로고
    • A unified quadratic-programming based dynamical system approach to joint torque optimization of physically constrained redundant manipulators
    • Zhang, Y., Ge, S. S., & Lee, T. H. (2004). A unified quadratic-programming based dynamical system approach to joint torque optimization of physically constrained redundant manipulators. IEEE Transactions on Systems, Man, and Cybernetics. Part B, 34(5), 2126-2132.
    • (2004) IEEE Transactions on Systems, Man, and Cybernetics. Part B , vol.34 , Issue.5 , pp. 2126-2132
    • Zhang, Y.1    Ge, S.S.2    Lee, T.H.3
  • 39
    • 0036738835 scopus 로고    scopus 로고
    • A recurrent neural network for solving sylvester equation with time-varying coefficients
    • doi, 10.1109/TNN.2002.1031938
    • Zhang, Y., Jiang, D., & Wang, J. (2002). A recurrent neural network for solving Sylvester equation with time-varying coefficients. IEEE Transactions on Neural Networks, 13(5), 1053-1063. doi:10.1109/TNN.2002.1031938
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.5 , pp. 1053-1063
    • Zhang, Y.1    Jiang, D.2    Wang, J.3
  • 40
    • 33847233283 scopus 로고    scopus 로고
    • Time-series gaussian process regression based on toeplitz computation of o(n^2) operations and o(n)-level storage
    • Seville
    • Zhang, Y., Leithead, W. E., & Leith, D. J.(2005). Time-series Gaussian process regression based on Toeplitz computation of O(N^2) operations and O(N)-level storage. In IEEE Conference on Decision and Control (pp. 3711-3716), Seville.
    • (2005) IEEE Conference on Decision and Control , pp. 3711-3716
    • Zhang, Y.1    Leithead, W.E.2    Leith, D.J.3
  • 41
    • 77950582151 scopus 로고    scopus 로고
    • Power-activation feed-forward neural network with its weights immediately determined
    • Beijing: Science Press
    • Zhang, Y., Li, W., Liu, W., Tan, M., & Chen, K. (2007). Power-activation feed-forward neural network with its weights immediately determined. In Chinese Conference on Pattern Recognition (pp. 72-77). Beijing: Science Press.
    • (2007) Chinese Conference on Pattern Recognition , pp. 72-77
    • Zhang, Y.1    Li, W.2    Liu, W.3    Tan, M.4    Chen, K.5
  • 42
    • 55249120468 scopus 로고    scopus 로고
    • A weights-directly-determined simple neural network for nonlinear system identification
    • Hong Kong
    • Zhang, Y., Li, W., Yi, C., & Chen, K. (2008). A weights-directly-determined simple neural network for nonlinear system identification. In IEEE International Conference on Fuzzy Systems (pp. 455-460), Hong Kong.
    • (2008) IEEE International Conference on Fuzzy Systems , pp. 455-460
    • Zhang, Y.1    Li, W.2    Yi, C.3    Chen, K.4
  • 43
    • 0035427221 scopus 로고    scopus 로고
    • Recurrent neural networks for nonlinear output regulation
    • doi, 10.1016/S00051098(01)00092-9
    • Zhang, Y., & Wang, J. (2001). Recurrent neural networks for nonlinear output regulation. Automatica, 37, 1161-1173. doi:10.1016/S00051098(01)00092-9
    • (2001) Automatica , vol.37 , pp. 1161-1173
    • Zhang, Y.1    Wang, J.2
  • 44
    • 0036565001 scopus 로고    scopus 로고
    • Global exponential stability of recurrent neural networks for synthesizing linear feedback control systems via pole assignment
    • doi, 10.1109/TNN.2002.1000129
    • Zhang, Y., & Wang, J. (2002). Global exponential stability of recurrent neural networks for synthesizing linear feedback control systems via pole assignment. IEEE Transactions on Neural Networks, 13(3), 633-644. doi:10.1109/TNN.2002.1000129
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.3 , pp. 633-644
    • Zhang, Y.1    Wang, J.2
  • 45
    • 53049105106 scopus 로고    scopus 로고
    • Growing algorithm of laguerre orthogonal basis neural network with weights directly determined
    • In D.-S. Huang et al (Eds.), Lecture Notes in Artificial Intelligence, Shanghai. Berlin: Springer-Verlag
    • Zhang, Y., Zhong, T., Li, W., Xiao, X., & Yi, C. (2008). Growing algorithm of Laguerre orthogonal basis neural network with weights directly determined. In D.-S. Huang et al (Eds.), International Conference on Intelligent Computing: Vol. 5227. Lecture Notes in Artificial Intelligence (pp. 60-67), Shanghai. Berlin: Springer-Verlag.
    • (2008) International Conference on Intelligent Computing , vol.5227 , pp. 60-67
    • Zhang, Y.1    Zhong, T.2    Li, W.3    Xiao, X.4    Yi, C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.