메뉴 건너뛰기




Volumn 84, Issue 31-32, 2006, Pages 2107-2112

Neural network weight training by mutation

Author keywords

Adaptive control; Dynamic mutation; Evolutionary computing; Integer variable representation; Neural network training; Variable mutation scope

Indexed keywords

ALGORITHMS; BACKPROPAGATION; BEAMS AND GIRDERS; ERROR ANALYSIS; NEURAL NETWORKS; NUMERICAL METHODS; RANDOM PROCESSES; STEEL STRUCTURES;

EID: 33751424309     PISSN: 00457949     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compstruc.2006.08.066     Document Type: Article
Times cited : (10)

References (17)
  • 1
    • 33751438573 scopus 로고    scopus 로고
    • Jenkins WM. A neural network trained by genetic algorithm. In: International conference on computational structures - Budapest, August 1996. CIVIL-COMP Press, Edinburgh.
  • 5
    • 0028548558 scopus 로고
    • Some civil engineering applications of neural networks
    • Goh A.T. Some civil engineering applications of neural networks. Proc Inst Civ Eng Struct Build 104 (1994) 463-469
    • (1994) Proc Inst Civ Eng Struct Build , vol.104 , pp. 463-469
    • Goh, A.T.1
  • 6
    • 0028416331 scopus 로고
    • Neural networks in civil engineering I: principles and understanding, II: systems and applications
    • ASCE
    • Flood I., and Kartam N. Neural networks in civil engineering I: principles and understanding, II: systems and applications. J Comput Civil Eng 8 2 (1994) ASCE
    • (1994) J Comput Civil Eng , vol.8 , Issue.2
    • Flood, I.1    Kartam, N.2
  • 7
    • 0028416468 scopus 로고
    • Simulating structural analysis with neural networks
    • ASCE
    • Rogers J.L. Simulating structural analysis with neural networks. J Comput Civil Eng 8 2 (1994) ASCE
    • (1994) J Comput Civil Eng , vol.8 , Issue.2
    • Rogers, J.L.1
  • 8
    • 0002273110 scopus 로고    scopus 로고
    • An introduction to neural computing for the structural engineer
    • 4 February
    • Jenkins W.M. An introduction to neural computing for the structural engineer. The Structural Engineer 75 N3 (1997) 4 February
    • (1997) The Structural Engineer , vol.75 , Issue.N3
    • Jenkins, W.M.1
  • 11
    • 33751415674 scopus 로고    scopus 로고
    • See L, Corne S, Dougherty M, Openshaw S. Some initial experiments with neural network models of flood forecasting on the River Ouse. In: Proc of GeoComputation '97. p. 15-22.
  • 12
    • 4143116589 scopus 로고    scopus 로고
    • Reda Taha MM, Nureldin N, El-Sheimy N, and Shrive NG. Neural network modelling of creep in masonry. In: Proceedings of the institution of civil engineers, structures and buildings 157, 2004, Issue SB4, p. 279-92.
  • 14
    • 0036501659 scopus 로고    scopus 로고
    • A decimal-coded evolutionary algorithm for constrained optimisation
    • Jenkins W.M. A decimal-coded evolutionary algorithm for constrained optimisation. Comput Struct 80 (2002) 471-480
    • (2002) Comput Struct , vol.80 , pp. 471-480
    • Jenkins, W.M.1
  • 15
    • 0036695882 scopus 로고    scopus 로고
    • Jenkins WM. A truss analogy and neural network for reinforced concrete deep beam analysis. In: Proceedings of the institution of civil engineers, structures & buildings, 152, 2002, Issue 3, p. 259-67.
  • 17
    • 33751417638 scopus 로고    scopus 로고
    • British Steel Construction Manual, 1998 Version 1.98. Rectangular Hollow Sections, Overall buckling check for axial load and bending, steel to grade 43.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.