-
1
-
-
0004085699
-
-
Ph.D, thesis, University of Toronto, Canada
-
C.E. Rasmussen, Evaluation of Gaussian processes and other methods for non-linear regression, Ph.D, thesis, University of Toronto, Canada, 1996.
-
(1996)
Evaluation of Gaussian processes and other methods for non-linear regression
-
-
Rasmussen, C.E.1
-
2
-
-
0003319647
-
Introduction to Gaussian processes
-
C.M. Bishop, Ed, Springer: Berlin, Heidelberg
-
D.J.C. MacKay, Introduction to Gaussian processes, Neural Networks and Machine Learning, F: Computer and Systems Sciences (C.M. Bishop, Ed.), 168: 133-165, Springer: Berlin, Heidelberg, 1998.
-
(1998)
Neural Networks and Machine Learning, F: Computer and Systems Sciences
, vol.168
, pp. 133-165
-
-
MacKay, D.J.C.1
-
3
-
-
0003017575
-
Prediction with Gaussian processes: From linear regression to linear prediction and beyond
-
Jordan, M. L, Ed
-
C.K.I. Williams, Prediction with Gaussian processes: from linear regression to linear prediction and beyond, Learning in Graphical Models (Jordan, M. L, Ed.), 599-621, 1999.
-
(1999)
Learning in Graphical Models
, pp. 599-621
-
-
Williams, C.K.I.1
-
4
-
-
0033726013
-
Gaussian process regression: Active data selection and test point rejection
-
S. Sambu, M. Wallat, T. Graepel, & K. Obermayer, "Gaussian process regression: active data selection and test point rejection", in the IEEE International Joint Conference on Neural Networks, 3: 241-246, 2000.
-
(2000)
IEEE International Joint Conference on Neural Networks
, pp. 241-246
-
-
Sambu, S.1
Wallat, M.2
Graepel, T.3
Obermayer, K.4
-
6
-
-
0036996352
-
Divide and conquer identifi cation using Gaussian process priors
-
D.J. Leith, W.E. Leithead, E. Solak, & R. Murray-Smith, "Divide and conquer identifi cation using Gaussian process priors", in the 41st IEEE Conference on Decision and Control, 1: 624-629, 2002.
-
(2002)
41st IEEE Conference on Decision and Control
, pp. 624-629
-
-
Leith, D.J.1
Leithead, W.E.2
Solak, E.3
Murray-Smith, R.4
-
7
-
-
84898995949
-
-
E. Solak, R. Murray-Smith, W.E. Leithead, D.J. Leith, & C.E. Rasmussen, Derivative observations in Gaussian process models of dynamic systems, in Advances in Neural Information Processing Systems (Becker, S., Thrun, S., & Obermayer, K., Eds.), 15: 1033-1040, MIT Press, 2003.
-
E. Solak, R. Murray-Smith, W.E. Leithead, D.J. Leith, & C.E. Rasmussen, "Derivative observations in Gaussian process models of dynamic systems", in Advances in Neural Information Processing Systems (Becker, S., Thrun, S., & Obermayer, K., Eds.), 15: 1033-1040, MIT Press, 2003.
-
-
-
-
8
-
-
33947374131
-
Identifi cation of aerodynamics and drive-train dynamics for a variable speed wind turbine
-
Madrid
-
W.E. Leithead, F. Hardan, & D.J. Leith, "Identifi cation of aerodynamics and drive-train dynamics for a variable speed wind turbine", in European Wind Energy Conference, Madrid, 2003.
-
(2003)
European Wind Energy Conference
-
-
Leithead, W.E.1
Hardan, F.2
Leith, D.J.3
-
9
-
-
0002978835
-
On curve fitting and optimal design for regression
-
A. O'Hagan, On curve fitting and optimal design for regression, Journal of Royal Statistical Society, B, vol. 40, pp. 1-42, 1978.
-
(1978)
Journal of Royal Statistical Society, B
, vol.40
, pp. 1-42
-
-
O'Hagan, A.1
-
10
-
-
79960723985
-
Efficient Gaussian process based on BFGS updating and logdet approximation
-
Prague, July
-
W. E. Leithead, Y. Zhang, & D. J. Leith, "Efficient Gaussian process based on BFGS updating and logdet approximation," in the 16th IFAC world congress, Prague, July 2005.
-
(2005)
16th IFAC world congress
-
-
Leithead, W.E.1
Zhang, Y.2
Leith, D.J.3
-
11
-
-
33745184235
-
Revisit the analog computer and gradient-based neural system for matrix inversion
-
Y. Zhang, "Revisit the analog computer and gradient-based neural system for matrix inversion", in the IEEE International Symposium on Intelligent Control, pp. 1411-1416, 2005.
-
(2005)
IEEE International Symposium on Intelligent Control
, pp. 1411-1416
-
-
Zhang, Y.1
-
13
-
-
33847177761
-
-
The MathWorks, Inc. MATLAB Optimization Toolbox, ver. 2.3, 2003
-
The MathWorks, Inc. MATLAB Optimization Toolbox, ver. 2.3, 2003.
-
-
-
|