메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1736-1743

Seeing through the blur

Author keywords

[No Author keywords available]

Indexed keywords

DIRECT METHOD; GAUSSIAN BLUR; HOMOGRAPHIES; HOMOGRAPHY TRANSFORMATION; IMAGE ALIGNMENT; INTENSITY-BASED METHODS; LOCAL MINIMUMS; LOWER ENERGIES; MOTION MODELS; OBJECTIVE FUNCTIONS; SCALE-SPACE;

EID: 84866685271     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6247869     Document Type: Conference Paper
Times cited : (25)

References (48)
  • 2
    • 84948150452 scopus 로고    scopus 로고
    • A scale-space approach to nonlocal optical flow calculations
    • 7
    • L. Alvarez, J. Weickert, and J. Sánchez. A scale-space approach to nonlocal optical flow calculations. Scale-Space'99, pages 235-246, 1999. 7
    • (1999) Scale-Space'99 , pp. 235-246
    • Alvarez, L.1    Weickert, J.2    Sánchez, J.3
  • 3
    • 1542285823 scopus 로고    scopus 로고
    • Lucas-kanade 20 years on: A unifying framework
    • 1
    • S. Baker and I. Matthews. Lucas-kanade 20 years on: A unifying framework. IJCV, 56:221-255, 2004. 1
    • (2004) IJCV , vol.56 , pp. 221-255
    • Baker, S.1    Matthews, I.2
  • 7
    • 0035686784 scopus 로고    scopus 로고
    • Geometric blur for template matching
    • 2, 5, 7
    • A. C. Berg and J. Malik. Geometric blur for template matching. CVPR'01, pages 607-614, 2001. 2, 5, 7
    • (2001) CVPR'01 , pp. 607-614
    • Berg, A.C.1    Malik, J.2
  • 11
    • 0030125662 scopus 로고    scopus 로고
    • Image motion estimation from motion smear - A new computational model
    • 7
    • W.-G. Chen, N. Nandhakumar, and W. N. Martin. Image motion estimation from motion smear-a new computational model. IEEE PAMI, 18(4):412-425, 1996. 7
    • (1996) IEEE PAMI , vol.18 , Issue.4 , pp. 412-425
    • Chen, W.-G.1    Nandhakumar, N.2    Martin, W.N.3
  • 15
    • 50649117726 scopus 로고    scopus 로고
    • Learning globallyconsistent local distance functions for shape-based image retrieval and classification
    • 7
    • A. Frome, F. Sha, Y. Singer, and J. Malik. Learning globallyconsistent local distance functions for shape-based image retrieval and classification. ICCV'07, 2007. 7
    • (2007) ICCV'07
    • Frome, A.1    Sha, F.2    Singer, Y.3    Malik, J.4
  • 19
    • 0021136434 scopus 로고
    • The structure of images
    • 2
    • J. J. Koenderink. The structure of images. Biological Cybernetics, 50(5):363-370, 1984. 2
    • (1984) Biological Cybernetics , vol.50 , Issue.5 , pp. 363-370
    • Koenderink, J.J.1
  • 20
    • 34250719248 scopus 로고    scopus 로고
    • Autonomous shaping: Knowledge transfer in reinforcement learning
    • 2
    • G. Konidaris and A. Barto. Autonomous shaping: knowledge transfer in reinforcement learning. ICML '06, pages 489-496, 2006. 2
    • (2006) ICML '06 , pp. 489-496
    • Konidaris, G.1    Barto, A.2
  • 21
    • 85161967298 scopus 로고    scopus 로고
    • Self-paced learning for latent variable models
    • Curran Associates, Inc., 2
    • M. P. Kumar, B. Packer, and D. Koller. Self-paced learning for latent variable models. In NIPS, pages 1189-1197. Curran Associates, Inc., 2010. 2
    • (2010) NIPS , pp. 1189-1197
    • Kumar, M.P.1    Packer, B.2    Koller, D.3
  • 23
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • 7
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML'09, pages 609- 616, 2009. 7
    • (2009) ICML'09 , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 24
    • 0035267667 scopus 로고    scopus 로고
    • Image registration, optical flow and local rigidity
    • 1
    • M. Lefebure and L. D. Cohen. Image registration, optical flow and local rigidity. J. Math. Imaging Vis., 14:131-147, 2001. 1
    • (2001) J. Math. Imaging Vis. , vol.14 , pp. 131-147
    • Lefebure, M.1    Cohen, L.D.2
  • 25
    • 0346297192 scopus 로고
    • On the axiomatic foundations of linear scale-space: Combining semi-group structure with causality vs. Scale invariance
    • 2
    • T. Lindeberg. On the Axiomatic Foundations of Linear Scale-Space: Combining Semi-Group Structure with Causality vs. Scale Invariance. In Gaussian Scale-Space Theory: Proc. PhD School on Scale-Space Theory, 1994. 2
    • (1994) Gaussian Scale-Space Theory: Proc. PhD School on Scale-Space Theory
    • Lindeberg, T.1
  • 26
    • 79953187911 scopus 로고    scopus 로고
    • Generalized gaussian scale-space axiomatics comprising linear scale-space, affine scale-space and spatiotemporal scale-space
    • 2
    • T. Lindeberg. Generalized gaussian scale-space axiomatics comprising linear scale-space, affine scale-space and spatiotemporal scale-space. J. Math. Imaging Vis., 40:36-81, 2011. 2
    • (2011) J. Math. Imaging Vis. , vol.40 , pp. 36-81
    • Lindeberg, T.1
  • 27
    • 75149182692 scopus 로고
    • Shape-adapted smoothing in estimation of 3-d depth cues from affine distortions of local 2-d brightness structure
    • 2
    • T. Lindeberg and J. Garding. Shape-adapted smoothing in estimation of 3-d depth cues from affine distortions of local 2-d brightness structure. In Image and Vision Computing, pages 389-400, 1994. 2
    • (1994) Image and Vision Computing , pp. 389-400
    • Lindeberg, T.1    Garding, J.2
  • 28
    • 0033284915 scopus 로고    scopus 로고
    • Object recognition from local scale-invariant features
    • 1
    • D. G. Lowe. Object recognition from local scale-invariant features. ICCV'99, pages 1150-1157, 1999. 1
    • (1999) ICCV'99 , pp. 1150-1157
    • Lowe, D.G.1
  • 29
    • 0019647180 scopus 로고
    • An iterative image registration technique with an application to stereo vision
    • 1, 3, 7
    • B. D. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. IJCAI'81, pages 674-679, 1981. 1, 3, 7
    • (1981) IJCAI'81 , pp. 674-679
    • Lucas, B.D.1    Kanade, T.2
  • 30
    • 71149084945 scopus 로고    scopus 로고
    • Deep learning from temporal coherence in video
    • 7
    • H. Mobahi, R. Collobert, and J. Weston. Deep learning from temporal coherence in video. ICML'09, pages 737- 744, 2009. 7
    • (2009) ICML'09 , pp. 737-744
    • Mobahi, H.1    Collobert, R.2    Weston, J.3
  • 31
    • 84863082585 scopus 로고    scopus 로고
    • Holistic 3d reconstruction of urban structures from low-rank textures
    • 1
    • H. Mobahi, Z. Zhou, A. Y. Yang, and Y. Ma. Holistic 3d reconstruction of urban structures from low-rank textures. In 3DRR Workshop, ICCV'11, pages 593-600, 2011. 1
    • (2011) 3DRR Workshop, ICCV'11 , pp. 593-600
    • Mobahi, H.1    Zhou, Z.2    Yang, A.Y.3    Ma, Y.4
  • 32
    • 0001897347 scopus 로고
    • Topography of the layer of rods and cones in the human retina
    • Levin & Munksgaard, 2
    • G. Osterberg. Topography of the layer of rods and cones in the human retina. Acta ophthalmologica: Supplementum. Levin & Munksgaard, 1935. 2
    • (1935) Acta Ophthalmologica: Supplementum
    • Osterberg, G.1
  • 33
    • 0000594925 scopus 로고
    • On the multiple-minima problem in the conformational analysis of molecules
    • 2
    • L. Piela, J. Kostrowicki, and H. A. Scheraga. On the multiple-minima problem in the conformational analysis of molecules. Journal of Physical Chemistry, 93(8):3339- 3346, 1989. 2
    • (1989) Journal of Physical Chemistry , vol.93 , Issue.8 , pp. 3339-3346
    • Piela, L.1    Kostrowicki, J.2    Scheraga, H.A.3
  • 34
    • 80052877144 scopus 로고    scopus 로고
    • On deep generative models with applications to recognition
    • 7
    • M. Ranzato, J. Susskind, V. Mnih, and G. Hinton. On deep generative models with applications to recognition. In CVPR'11, 2011. 7
    • (2011) CVPR'11
    • Ranzato, M.1    Susskind, J.2    Mnih, V.3    Hinton, G.4
  • 37
    • 0003137923 scopus 로고
    • Efficient pattern recognition using a new transformation distance
    • 1
    • P. Simard, Y. LeCun, and J. S. Denker. Efficient pattern recognition using a new transformation distance. NIPS'92, pages 50-58, 1993. 1
    • (1993) NIPS'92 , pp. 50-58
    • Simard, P.1    Lecun, Y.2    Denker, J.S.3
  • 38
    • 84858423134 scopus 로고    scopus 로고
    • From baby steps to leapfrog: How "less is more" in unsupervised dependency parsing
    • 2
    • V. I. Spitkovsky, H. Alshawi, and D. Jurafsky. From Baby Steps to Leapfrog: How "Less is More" in unsupervised dependency parsing. In Proc. of NAACL-HLT, 2010. 2
    • (2010) Proc. of NAACL-HLT
    • Spitkovsky, I.1    Alshawi, H.2    Jurafsky, D.3
  • 39
    • 33847080485 scopus 로고    scopus 로고
    • Image alignment and stitching: A tutorial
    • 1
    • R. Szeliski. Image alignment and stitching: a tutorial. Found. Trends. Comput. Graph. Vis., 2:1-104, 2006. 1
    • (2006) Found. Trends. Comput. Graph. Vis. , vol.2 , pp. 1-104
    • Szeliski, R.1
  • 40
    • 51949119638 scopus 로고    scopus 로고
    • A fast local descriptor for dense matching
    • 2, 7
    • E. Tola, V. Lepetit, and P. Fua. A fast local descriptor for dense matching. CVPR'08, 2008. 2, 7
    • (2008) CVPR'08
    • Tola, E.1    Lepetit, V.2    Fua, P.3
  • 41
    • 84937565779 scopus 로고    scopus 로고
    • Robust parameterized component analysis
    • 1
    • F. d. l. Torre and M. J. Black. Robust parameterized component analysis. ECCV'02, pages 653-669, 2002. 1
    • (2002) ECCV'02 , pp. 653-669
    • Torre, F.D.L.1    Black, M.J.2
  • 46
    • 0020891393 scopus 로고
    • volume 2 of IJCAI'83, Karlsruhe, 2
    • A. P. Witkin. Scale-Space Filtering. volume 2 of IJCAI'83, pages 1019-1022, Karlsruhe, 1983. 2
    • (1983) Scale-Space Filtering , pp. 1019-1022
    • Witkin, A.P.1
  • 47
    • 0022605087 scopus 로고
    • Scaling theorems for zero crossings
    • 2
    • A. L. Yuille and T. A. Poggio. Scaling theorems for zero crossings. IEEE PAMI, 8(1):15-25, 1986. 2
    • (1986) IEEE PAMI , vol.8 , Issue.1 , pp. 15-25
    • Yuille, A.L.1    Poggio, T.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.