메뉴 건너뛰기




Volumn I, Issue , 2005, Pages 26-33

Shape matching and object recognition using low distortion correspondences

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; DATABASE SYSTEMS; FORMABILITY; IMAGE ANALYSIS; INTEGER PROGRAMMING; PROBLEM SOLVING; SET THEORY;

EID: 24644502276     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2005.320     Document Type: Conference Paper
Times cited : (787)

References (33)
  • 1
    • 84858895820 scopus 로고    scopus 로고
    • Caltech 101 dataset www.vision.caltech.edu/feifeili/101_ObjectCategories.
    • Caltech 101 Dataset
  • 2
    • 0031275836 scopus 로고    scopus 로고
    • Joint induction of shape features and tree classifiers
    • November
    • Y. Amit. D. Geman, and K. Wilder. Joint induction of shape features and tree classifiers. IEEE Trans, PAMI, 19( 11): 1300-1305, November 1997.
    • (1997) IEEE Trans, PAMI , vol.19 , Issue.11 , pp. 1300-1305
    • Amit, Y.1    Geman, D.2    Wilder, K.3
  • 4
    • 0035686784 scopus 로고    scopus 로고
    • Geometric blur for template matching
    • A. C. Berg and J. Malik. Geometric blur for template matching. In CVPR, pages 607-614, 2001.
    • (2001) CVPR , pp. 607-614
    • Berg, A.C.1    Malik, J.2
  • 6
    • 0042904903 scopus 로고    scopus 로고
    • A new point matching algorithm for non-rigid registration
    • H. Chui and A. Rangarajan. A new point matching algorithm for non-rigid registration. CVIU, 89:114-141, 2003.
    • (2003) CVIU , vol.89 , pp. 114-141
    • Chui, H.1    Rangarajan, A.2
  • 7
    • 0344983284 scopus 로고    scopus 로고
    • A bayesian approach to unsupervised one-shot learning of object categories
    • E. Fei-Fei, R. Fergus, and P. Perona. A bayesian approach to unsupervised one-shot learning of object categories. In ICCV. pages 1134-1141. 2003.
    • (2003) ICCV , pp. 1134-1141
    • Fei-Fei, E.1    Fergus, R.2    Perona, P.3
  • 8
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
    • E. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In CVPR, Workshop on Generative-Model Based Vision, 2004.
    • (2004) CVPR, Workshop on Generative-model Based Vision
    • Fei-Fei, E.1    Fergus, R.2    Perona, P.3
  • 9
    • 0041940256 scopus 로고    scopus 로고
    • Object class recognition by unsupervised scale-invariant learning
    • R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale-invariant learning. In CVPR. pages 264-271, 2003.
    • (2003) CVPR , pp. 264-271
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 10
    • 0015567825 scopus 로고
    • The representation and matching of pictorial structures
    • M. Fischler and R. Elschlager. The representation and matching of pictorial structures. IEEE Trans. Computers, C-22(l): 67-92. 1973.
    • (1973) IEEE Trans. Computers , vol.C-22 , Issue.50 , pp. 67-92
    • Fischler, M.1    Elschlager, R.2
  • 13
    • 33745174671 scopus 로고    scopus 로고
    • A. Holub, M. Welling, and P. Perona. M.S.R.I. March 2005
    • A. Holub, M. Welling, and P. Perona. M.S.R.I. March 2005.
  • 14
    • 0027657143 scopus 로고
    • Comparing images using the Hausdorff distance
    • Sept.
    • D. Huttenlocher. G. Klanderman. and W. Rucklidge. Comparing images using the Hausdorff distance. IEEE Trans. PAMI. 15(9):850-863, Sept. 1993.
    • (1993) IEEE Trans. PAMI , vol.15 , Issue.9 , pp. 850-863
    • Huttenlocher, D.1    Klanderman, G.2    Rucklidge, W.3
  • 17
    • 0029215679 scopus 로고
    • Finding faces in cluttered scenes using random labeled graph matching
    • T. Leung, M. Burl, and P. Perona. Finding faces in cluttered scenes using random labeled graph matching. In Proc. 5th Int. Conf. Computer Vision, pages 637-644, 1995.
    • (1995) Proc. 5th Int. Conf. Computer Vision , pp. 637-644
    • Leung, T.1    Burl, M.2    Perona, P.3
  • 18
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91-110, 2004.
    • (2004) IJCV , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 19
    • 0037330974 scopus 로고    scopus 로고
    • A global solution to sparse correspondence problems
    • J. Maciel and J. Costeira. A global solution to sparse correspondence problems. PAMI. 25(2): 187-199. 2003.
    • (2003) PAMI , vol.25 , Issue.2 , pp. 187-199
    • Maciel, J.1    Costeira, J.2
  • 20
    • 3042525106 scopus 로고    scopus 로고
    • Learning to detect natural image boundaries using local brightness, color, and texture cues
    • D. Martin, C. Fowlkes, and J. Malik. Learning to detect natural image boundaries using local brightness, color, and texture cues. PAMI, 26(5):530-549, 2004.
    • (2004) PAMI , vol.26 , Issue.5 , pp. 530-549
    • Martin, D.1    Fowlkes, C.2    Malik, J.3
  • 22
    • 0041438862 scopus 로고    scopus 로고
    • A performance evaluation of local descriptors
    • K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. In CVPR, pages 257-263, 2003.
    • (2003) CVPR , pp. 257-263
    • Mikolajczyk, K.1    Schmid, C.2
  • 23
    • 0035683817 scopus 로고    scopus 로고
    • Shape contexts enable efficient retrieval of similar shapes
    • G. Mori, S. Belongie, and J. Malik. Shape contexts enable efficient retrieval of similar shapes. In CVPR, volume 1, pages 723-730, 2001.
    • (2001) CVPR , vol.1 , pp. 723-730
    • Mori, G.1    Belongie, S.2    Malik, J.3
  • 24
    • 0024294846 scopus 로고
    • Feature detection in human vision: A phase dependent energy model
    • M. Morrone and D. Burr. Feature detection in human vision: A phase dependent energy model. Proc. Royal Soc. of London B, 235:221-245, 1988.
    • (1988) Proc. Royal Soc. of London B , vol.235 , pp. 221-245
    • Morrone, M.1    Burr, D.2
  • 25
    • 0008912473 scopus 로고
    • A thin plate spline method for mapping curves into curves in two dimensions
    • Melbourne, Australia
    • M. J. D. Powell. A thin plate spline method for mapping curves into curves in two dimensions. In CTAC, Melbourne, Australia, 1995.
    • (1995) CTAC
    • Powell, M.J.D.1
  • 26
    • 5044226112 scopus 로고    scopus 로고
    • 3d object modeling and recognition using affine-invariant patches and multi-view spatial constraints
    • F. Rothganger, S. Lazebnik, C. Schmid. and J. Ponce. 3d object modeling and recognition using affine-invariant patches and multi-view spatial constraints. In CVPR, pages II:272275. 2003.
    • (2003) CVPR
    • Rothganger, F.1    Lazebnik, S.2    Schmid, C.3    Ponce, J.4
  • 27
    • 0031139628 scopus 로고    scopus 로고
    • Local grayvalue invariants for image retrieval
    • May
    • C. Schmid and R. Mohr. Local grayvalue invariants for image retrieval. IEEE Trans. PAMI. 19(5):530-535, May 1997.
    • (1997) IEEE Trans. PAMI , vol.19 , Issue.5 , pp. 530-535
    • Schmid, C.1    Mohr, R.2
  • 28
    • 5044225051 scopus 로고    scopus 로고
    • Feature-centric evaluation for efficient cascaded object detection
    • H. Schneiderman. Feature-centric evaluation for efficient cascaded object detection. In CVPR, pages 29-36, 2004.
    • (2004) CVPR , pp. 29-36
    • Schneiderman, H.1
  • 29
    • 0033682228 scopus 로고    scopus 로고
    • A statistical method for 3d object detection applied to faces and cars
    • H. Schneiderman and T. Kanade. A statistical method for 3d object detection applied to faces and cars. In CVPR. pages 746-751, 2000.
    • (2000) CVPR , pp. 746-751
    • Schneiderman, H.1    Kanade, T.2
  • 31
    • 5044224293 scopus 로고    scopus 로고
    • Sharing features: Efficient boosting procedures for multiclass object detection
    • A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing features: efficient boosting procedures for multiclass object detection. In CVPR, pages 762-769, 2004.
    • (2004) CVPR , pp. 762-769
    • Torralba, A.1    Murphy, K.P.2    Freeman, W.T.3
  • 32
    • 0036307392 scopus 로고    scopus 로고
    • Visual features of intermediate complexity and their use in classification
    • S. Ullman, M. Vidal-Naquet, and F. Sali. Visual features of intermediate complexity and their use in classification. Nat. Neur., 13:682-687, 2002.
    • (2002) Nat. Neur. , vol.13 , pp. 682-687
    • Ullman, S.1    Vidal-Naquet, M.2    Sali, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.