메뉴 건너뛰기




Volumn , Issue , 2011, Pages 401-408

A probabilistic model for recursive factorized image features

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; OBJECT RECOGNITION;

EID: 80052906316     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2011.5995728     Document Type: Conference Paper
Times cited : (7)

References (34)
  • 2
    • 56449111857 scopus 로고    scopus 로고
    • Training hierarchical feed-forward visual recognition models using transfer learning from pseudo-tasks
    • 402, 405
    • A. Ahmed, K. Yu, W. Xu, Y. Gong, and E. P. Xing. Training Hierarchical Feed-Forward Visual Recognition Models Using Transfer Learning from Pseudo-Tasks. ECCV, 2008. 402, 405
    • (2008) ECCV
    • Ahmed, A.1    Yu, K.2    Xu, W.3    Gong, Y.4    Xing, E.P.5
  • 5
    • 77955993281 scopus 로고    scopus 로고
    • Learning mid-level features for recognition
    • 401, 405, 407
    • Y.-L. Boureau, F. Bach, Y. LeCun, and J. Ponce. Learning Mid-Level Features For Recognition. CVPR 2010, 2010. 401, 405, 407
    • (2010) CVPR 2010
    • Boureau, Y.-L.1    Bach, F.2    LeCun, Y.3    Ponce, J.4
  • 6
    • 34247107907 scopus 로고    scopus 로고
    • Transformation of shape information in the ventral pathway
    • 402
    • C. E. Connor, S. L. Brincat, and A. Pasupathy. Transformation of shape information in the ventral pathway. Current Opinion in Neurobiology, 17(2):140-147, 2007. 402
    • (2007) Current Opinion in Neurobiology , vol.17 , Issue.2 , pp. 140-147
    • Connor, C.E.1    Brincat, S.L.2    Pasupathy, A.3
  • 7
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
    • 404, 406
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories. CVPR 2004, Workshop on Generative-Model Based Vision, 2004. 404, 406
    • (2004) CVPR 2004, Workshop on Generative-Model Based Vision
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 8
    • 51949101472 scopus 로고    scopus 로고
    • Similarity-based cross-layered hierarchical representation for object categorization
    • 405, 407
    • S. Fidler, M. Boben, and A. Leonardis. Similarity-based cross-layered hierarchical representation for object categorization. In CVPR, 2008. 405, 407
    • (2008) CVPR
    • Fidler, S.1    Boben, M.2    Leonardis, A.3
  • 9
    • 35148867545 scopus 로고    scopus 로고
    • Towards scalable representations of object categories: Learning a hierarchy of parts
    • 401, 402
    • S. Fidler and A. Leonardis. Towards Scalable Representations of Object Categories: Learning a Hierarchy of Parts. CVPR 2007, 2007. 401, 402
    • (2007) CVPR 2007
    • Fidler, S.1    Leonardis, A.2
  • 10
    • 84856651159 scopus 로고    scopus 로고
    • An additive latent feature model for transparent object recognition
    • 401, 402
    • M. Fritz, M. J. Black, G. R. Bradski, S. Karayev, and T. Darrell. An Additive Latent Feature Model for Transparent Object Recognition. NIPS, 2009. 401, 402
    • (2009) NIPS
    • Fritz, M.1    Black, M.J.2    Bradski, G.R.3    Karayev, S.4    Darrell, T.5
  • 11
    • 50249144225 scopus 로고    scopus 로고
    • Parameter estimation for text analysis
    • 404
    • G. Heinrich. Parameter estimation for text analysis. Technical Report, 2008. 404
    • (2008) Technical Report
    • Heinrich, G.1
  • 12
    • 35348818718 scopus 로고    scopus 로고
    • Learning multiple layers of representation. Trends in Cogn
    • 402
    • G. E. Hinton. Learning multiple layers of representation. Trends in Cogn. Sciences, 11(10):428-434, 2007. 402
    • (2007) Sciences , vol.11 , Issue.10 , pp. 428-434
    • Hinton, G.E.1
  • 13
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • 401
    • G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18:1527-1554, 2006. 401
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 14
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multi-stage architecture for object recognition?
    • 406
    • K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun. What is the Best Multi-Stage Architecture for Object Recognition? CVPR, 2009. 406
    • (2009) CVPR
    • Jarrett, K.1    Kavukcuoglu, K.2    Ranzato, M.A.3    LeCun, Y.4
  • 15
    • 77956006319 scopus 로고    scopus 로고
    • Robust classification of objects, faces, and flowers using natural image statistics
    • 407
    • C. Kanan and G. Cottrell. Robust classification of objects, faces, and flowers using natural image statistics. In CVPR, 2010. 407
    • (2010) CVPR
    • Kanan, C.1    Cottrell, G.2
  • 17
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • 401, 405
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. CVPR 2006, 2006. 401, 405
    • (2006) CVPR 2006
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 20
    • 33749249041 scopus 로고    scopus 로고
    • Pachinko allocation: DAG-structured mixture models of topic correlations
    • 402
    • W. Li and A. McCallum. Pachinko Allocation: DAG-Structured Mixture Models of Topic Correlations. ICML 2006, 2006. 402
    • (2006) ICML 2006
    • Li, W.1    McCallum, A.2
  • 21
  • 22
    • 51149092609 scopus 로고    scopus 로고
    • Object class recognition and localization using sparse features with limited receptive fields
    • 401, 402, 405
    • J. Mutch and D. G. Lowe. Object class recognition and localization using sparse features with limited receptive fields. International Journal of Computer Vision, 2008. 401, 402, 405
    • (2008) International Journal of Computer Vision
    • Mutch, J.1    Lowe, D.G.2
  • 23
    • 10444233676 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by V1?
    • 401
    • B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research, 2003. 401
    • (2003) Vision Research
    • Olshausen, B.A.1    Field, D.J.2
  • 24
    • 34948879650 scopus 로고    scopus 로고
    • Learning the compositional nature of visual objects
    • 402, 405
    • B. Ommer and J. M. Buhmann. Learning the compositional nature of visual objects. In CVPR, 2007. 402, 405
    • (2007) CVPR
    • Ommer, B.1    Buhmann, J.M.2
  • 25
    • 51249118803 scopus 로고    scopus 로고
    • Unsupervised learning of invariant feature hierarchies with applications to object recognition
    • 401, 402, 407
    • M. A. Ranzato, F.-J. Huang, Y.-L. Boureau, and Y. LeCun. Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition. CVPR, 2008. 401, 402, 407
    • (2008) CVPR
    • Ranzato, M.A.1    Huang, F.-J.2    Boureau, Y.-L.3    LeCun, Y.4
  • 27
    • 33847380121 scopus 로고    scopus 로고
    • Object recognition with cortex-like mechanisms
    • 401, 402, 407
    • T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio. Object recognition with cortex-like mechanisms. PAMI, 29(3):411-426, 2007. 401, 402, 407
    • (2007) PAMI , vol.29 , Issue.3 , pp. 411-426
    • Serre, T.1    Wolf, L.2    Bileschi, S.3    Riesenhuber, M.4    Poggio, T.5
  • 30
    • 80052909824 scopus 로고    scopus 로고
    • Object recognition and segmentation by a fragment-based hierarchy
    • 402
    • S. Ullman. Object recognition and segmentation by a fragment-based hierarchy. TRENDS in Cognitive Sciences, 2006. 402
    • (2006) TRENDS in Cognitive Sciences
    • Ullman, S.1
  • 31
    • 77955996870 scopus 로고    scopus 로고
    • Locality-constrained linear coding for image classification
    • 407
    • J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained Linear Coding for Image Classification. CVPR 2010, 2010. 407
    • (2010) CVPR 2010
    • Wang, J.1    Yang, J.2    Yu, K.3    Lv, F.4    Huang, T.5    Gong, Y.6
  • 33
    • 70450134221 scopus 로고    scopus 로고
    • Unsupervised structure learning: Hierarchical recursive composition, suspicious coincidence and competitive exclusion
    • 401, 402
    • L. L. Zhu, C. Lin, H. Huang, Y. Chen, and A. Yuille. Unsupervised Structure Learning: Hierarchical Recursive Composition, Suspicious Coincidence and Competitive Exclusion. ECCV 2008, 2008. 401, 402
    • (2008) ECCV 2008
    • Zhu, L.L.1    Lin, C.2    Huang, H.3    Chen, Y.4    Yuille, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.