메뉴 건너뛰기




Volumn 21, Issue 10, 2012, Pages 4349-4360

Visual classification with multitask joint sparse representation

Author keywords

Feature fusion; multitask learning; sparse representation; visual classification

Indexed keywords

COVARIATES; FEATURE FUSION; JOINT SPARSITY; KERNEL MATRICES; MULTIPLE FEATURES; MULTIPLE INSTANCES; MULTIPLE KERNELS; MULTIPLE REPRESENTATION; MULTITASK LEARNING; OBJECT CATEGORIZATION; QUERY IMAGES; REAL WORLD DATA; SPARSE REPRESENTATION; STATE-OF-THE-ART METHODS; VISUAL CLASSIFICATION;

EID: 84866609133     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2012.2205006     Document Type: Article
Times cited : (374)

References (60)
  • 1
    • 33745604236 scopus 로고    scopus 로고
    • Stable signal recovery from incomplete and inaccurate measurements
    • DOI 10.1002/cpa.20124
    • E. Candés, J. Romberg, and T. Tao, "Stable signal recovery from incomplete and inaccurate measurements," Commun. Pure Appl. Math., vol. 59, no. 8, pp. 1207-1223, 2006. (Pubitemid 43988295)
    • (2006) Communications on Pure and Applied Mathematics , vol.59 , Issue.8 , pp. 1207-1223
    • Candes, E.J.1    Romberg, J.K.2    Tao, T.3
  • 2
  • 3
    • 70450162109 scopus 로고    scopus 로고
    • Toward a practical face recognition system: Robust registration and illumination by sparse representation
    • Jun.
    • A. Wagner, J. Wright, A. Ganesh, Z. Zhou, and Y. Ma, "Toward a practical face recognition system: Robust registration and illumination by sparse representation," in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit., Jun. 2009, pp. 597-604.
    • (2009) Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit. , pp. 597-604
    • Wagner, A.1    Wright, J.2    Ganesh, A.3    Zhou, Z.4    Ma, Y.5
  • 4
    • 77952717202 scopus 로고    scopus 로고
    • Sparse representation for computer vision and pattern recognition
    • Jun
    • J. Wright, Y. Ma, J. Mairal, G. Spairo, T. Huang, and S. Yan, "Sparse representation for computer vision and pattern recognition," Proc. IEEE, vol. 98, no. 6, pp. 1031-1044, Jun. 2010.
    • (2010) Proc. IEEE , vol.98 , Issue.6 , pp. 1031-1044
    • Wright, J.1    Ma, Y.2    Mairal, J.3    Spairo, G.4    Huang, T.5    Yan, S.6
  • 6
    • 72749110068 scopus 로고    scopus 로고
    • Semi-supervised learning by sparse representation
    • S. Yan and H. Wang, "Semi-supervised learning by sparse representation," in Proc. SIAM Int. Conf. Data Mining, 2009, pp. 792-801.
    • (2009) Proc. SIAM Int. Conf. Data Mining , pp. 792-801
    • Yan, S.1    Wang, H.2
  • 7
    • 78049312324 scopus 로고    scopus 로고
    • Image super-resolution via sparse representation
    • Nov
    • J. Yang, J. Wright, T. Huang, and Y. Ma, "Image super-resolution via sparse representation," IEEE Trans. Image Process., vol. 19, no. 11, pp. 2861-2873, Nov. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.11 , pp. 2861-2873
    • Yang, J.1    Wright, J.2    Huang, T.3    Ma, Y.4
  • 9
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by V1?
    • DOI 10.1016/S0042-6989(97)00169-7, PII S0042698997001697
    • B. Olshausen and D. Field, "Sparse coding with an overcomplete basis set: A strategy employed by v1?" Vis. Res., vol. 37, no. 23, pp. 3311-3325, 1997. (Pubitemid 27493805)
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 10
    • 0031189914 scopus 로고    scopus 로고
    • Multi-task learning
    • R. Caruana, "Multi-task learning," Mach. Learn., vol. 28, no. 1, pp. 41-75, 1997.
    • (1997) Mach. Learn , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 12
    • 63049087592 scopus 로고    scopus 로고
    • A multitask learning model for online pattern recognition
    • Mar
    • S. Ozawa, A. Roy, and D. Roussinov, "A multitask learning model for online pattern recognition," IEEE Trans. Neural Netw., vol. 20, no. 3, pp. 430-445, Mar. 2009.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.3 , pp. 430-445
    • Ozawa, S.1    Roy, A.2    Roussinov, D.3
  • 13
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • A. Argyriou, T. Evgeniou, and M. Pontil, "Convex multi-task feature learning," Mach. Learn., vol. 73, no. 3, pp. 243-272, 2008.
    • (2008) Mach. Learn. , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 15
    • 71149111015 scopus 로고    scopus 로고
    • Blockwise coordinate descent procedures for the multi-task lasso, with applications to neural semantic basis discovery
    • H. Liu, M. Palatucci, and J. Zhang, "Blockwise coordinate descent procedures for the multi-task lasso, with applications to neural semantic basis discovery," in Proc. Int. Conf. Mach. Learn., 2009, pp. 649-656.
    • (2009) Proc. Int. Conf. Mach. Learn. , pp. 649-656
    • Liu, H.1    Palatucci, M.2    Zhang, J.3
  • 16
    • 77953322499 scopus 로고    scopus 로고
    • Joint covariate selection and joint subspace selection for multiple classification problems
    • G. Obozinski, B. Taskar, and M. Jordan, "Joint covariate selection and joint subspace selection for multiple classification problems," J. Stat. Comput., vol. 20, no. 2, pp. 231-252, 2009.
    • (2009) J. Stat. Comput. , vol.20 , Issue.2 , pp. 231-252
    • Obozinski, G.1    Taskar, B.2    Jordan, M.3
  • 17
    • 70049094230 scopus 로고    scopus 로고
    • School Comput. Sci., Carnegie Mellon University, Pittsburgh, PA, Tech. Rep. CMU-LTI-06-006
    • J. Zhang, "A probabilistic framework for multi-task learning," School Comput. Sci., Carnegie Mellon University, Pittsburgh, PA, Tech. Rep. CMU-LTI-06-006, 2006.
    • (2006) A Probabilistic Framework for Multi-task Learning
    • Zhang, J.1
  • 18
    • 36749019495 scopus 로고    scopus 로고
    • Recovery algorithm for vector-valued data with joint sparsity constraints
    • M. Fornasier and H. Rauhut, "Recovery algorithm for vector-valued data with joint sparsity constraints," SIAM J. Numer. Anal., vol. 46, no. 2, pp. 577-613, 2008.
    • (2008) SIAM J. Numer. Anal. , vol.46 , Issue.2 , pp. 577-613
    • Fornasier, M.1    Rauhut, H.2
  • 20
    • 70049111607 scopus 로고    scopus 로고
    • On accelerated proximal gradient methods for convexconcave optimization
    • submitted for publication
    • P. Tseng, "On accelerated proximal gradient methods for convexconcave optimization," SIAM J. Optim., submitted for publication.
    • SIAM J. Optim.
    • Tseng, P.1
  • 25
    • 85067032737 scopus 로고    scopus 로고
    • On feature combination for multiclass object classification
    • Oct.
    • P. Gehler and S. Nowozin, "On feature combination for multiclass object classification," in Proc. Int. Conf. Comput. Vis., Oct. 2009, pp. 221-228.
    • (2009) Proc. Int. Conf. Comput. Vis. , pp. 221-228
    • Gehler, P.1    Nowozin, S.2
  • 27
    • 50649115912 scopus 로고    scopus 로고
    • Learning the discriminative power-invariance trade-off
    • Oct.
    • M. Varma and D. Ray, "Learning the discriminative power-invariance trade-off," in Proc. IEEE Int. Conf. Comput. Vis., Oct. 2007, pp. 1-8.
    • (2007) Proc. IEEE Int. Conf. Comput. Vis. , pp. 1-8
    • Varma, M.1    Ray, D.2
  • 28
    • 2142812371 scopus 로고    scopus 로고
    • Robust real-time face detection
    • P. Viola and M. Jones, "Robust real-time face detection," Int. J. Comput. Vis., vol. 57, no. 2, pp. 137-154, 2004.
    • (2004) Int. J. Comput. Vis. , vol.57 , Issue.2 , pp. 137-154
    • Viola, P.1    Jones, M.2
  • 29
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • A. Beck and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems," SIAM J. Imag. Sci., vol. 2, no. 1, pp. 183-202, 2009.
    • (2009) SIAM J. Imag. Sci. , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 31
    • 69049086702 scopus 로고    scopus 로고
    • Some sharp performance bounds for least squares regression with L1 regularization
    • T. Zhang, "Some sharp performance bounds for least squares regression with L1 regularization," Ann. Stat., vol. 37, no. 5A, pp. 2109-2144, 2009.
    • (2009) Ann. Stat. , vol.37 , Issue.5 A , pp. 2109-2144
    • Zhang, T.1
  • 32
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistancy of lasso
    • Dec.
    • P. Zhao and B. Yu, "On model selection consistancy of lasso," J. Mach. Learn. Res., vol. 7, pp. 2541-2567, Dec. 2006.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2541-2567
    • Zhao, P.1    Yu, B.2
  • 35
    • 69949155103 scopus 로고    scopus 로고
    • The composite absolute penalties family for grouped and hierarchical variable selection
    • P. Zhao, G. Rocha, and B. Yu, "The composite absolute penalties family for grouped and hierarchical variable selection," Ann. Stat., vol. 37, no. 6A, pp. 3468-3497, 2009.
    • (2009) Ann. Stat. , vol.37 , Issue.6 A , pp. 3468-3497
    • Zhao, P.1    Rocha, G.2    Yu, B.3
  • 38
    • 30844445842 scopus 로고    scopus 로고
    • Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit
    • DOI 10.1016/j.sigpro.2005.05.030, PII S0165168405002227, Sparse Approximations in Signal and Image Processing
    • J. A.Tropp, A. C. Gilbert, and M. J. Strauss, "Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit," EURASIP J. Appl. Signal Process., vol. 86, no. 3, pp. 572-588, 2006. (Pubitemid 43106572)
    • (2006) Signal Processing , vol.86 , Issue.3 , pp. 572-588
    • Tropp, J.A.1    Gilbert, A.C.2    Strauss, M.J.3
  • 39
    • 70350743173 scopus 로고    scopus 로고
    • Robust recovery of signals from a structured union of subspaces
    • Nov
    • Y. C. Eldar and M. Mishali, "Robust recovery of signals from a structured union of subspaces," IEEE Trans. Inf. Theory, vol. 55, no. 11, pp. 5302-5316, Nov. 2009.
    • (2009) IEEE Trans. Inf. Theory , vol.55 , Issue.11 , pp. 5302-5316
    • Eldar, Y.C.1    Mishali, M.2
  • 40
    • 77952740831 scopus 로고    scopus 로고
    • On the role of sparse and redundant representations in image processing
    • Jun
    • M. Elad, M. Figueiredo, and Y. Ma, "On the role of sparse and redundant representations in image processing," Proc. IEEE, vol. 98, no. 6, pp. 972-982, Jun. 2010.
    • (2010) Proc. IEEE , vol.98 , Issue.6 , pp. 972-982
    • Elad, M.1    Figueiredo, M.2    Ma, Y.3
  • 46
    • 35148859368 scopus 로고    scopus 로고
    • Local ensemble kernel learning for object category recognition
    • Jun.
    • Y. Lin, T. Liu, and C. Fuh, "Local ensemble kernel learning for object category recognition," in Proc. IEEE Int. Conf. Comput. Vis., Jun. 2007, pp. 1-8.
    • (2007) Proc. IEEE Int. Conf. Comput. Vis. , pp. 1-8
    • Lin, Y.1    Liu, T.2    Fuh, C.3
  • 47
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, "Regression shrinkage and selection via the lasso," J. Royal Stat. Soc., Ser. B, vol. 58, no. 1, pp. 267-288, 1996.
    • (1996) J. Royal Stat. Soc., Ser. B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 49
    • 33646365077 scopus 로고    scopus 로고
    • 1-norm solution is also the sparsest solution
    • 1-norm solution is also the sparsest solution," Commun. Pure Appl. Math., vol. 59, no. 6, pp. 797-826, 2006.
    • (2006) Commun. Pure Appl. Math. , vol.59 , Issue.6 , pp. 797-826
    • Donoho, D.1
  • 50
    • 79551550744 scopus 로고    scopus 로고
    • NESTA: A fast and accurate firstorder method for sparse recovery
    • S. Becker, J. Bobin, and E. J. Candès, "NESTA: A fast and accurate firstorder method for sparse recovery," SIAM J. Imag. Sci., vol. 4, no. 1, pp. 1-39, 2009.
    • (2009) SIAM J. Imag. Sci. , vol.4 , Issue.1 , pp. 1-39
    • Becker, S.1    Bobin, J.2    Candès, E.J.3
  • 51
    • 77951173993 scopus 로고    scopus 로고
    • Accelerated gradient method for multi-task sparse learning problem
    • Dec.
    • X. Chen, W. Pan, J. Kwok, and J. Garbonell, "Accelerated gradient method for multi-task sparse learning problem," in Proc. IEEE Int. Conf. Data Mining, Dec. 2009, pp. 746-751.
    • (2009) Proc. IEEE Int. Conf. Data Mining , pp. 746-751
    • Chen, X.1    Pan, W.2    Kwok, J.3    Garbonell, J.4
  • 52
    • 70049113231 scopus 로고    scopus 로고
    • Sparse regression using mixed norms
    • M. Kowalski, "Sparse regression using mixed norms," Appl. Comput. Harmonic Anal., vol. 27, no. 3, pp. 303-324, 2009.
    • (2009) Appl. Comput. Harmonic Anal. , vol.27 , Issue.3 , pp. 303-324
    • Kowalski, M.1
  • 53
    • 73049115925 scopus 로고    scopus 로고
    • Sparsity and persistence: Mixed norms provide simple signals models with dependent coefficient
    • M. Kowalski and B. Torreesani, "Sparsity and persistence: Mixed norms provide simple signals models with dependent coefficient," Signal, Image Video Process., vol. 3, pp. 251-264, 2009.
    • (2009) Signal, Image Video Process. , vol.3 , pp. 251-264
    • Kowalski, M.1    Torreesani, B.2
  • 54
    • 84862276986 scopus 로고    scopus 로고
    • Optimizing costly functions with simple constraints: A limited-memory projected quasi-Newton algorithm
    • M. Schmidt, E. Berg, M. Friedlander, and K. Murphy, "Optimizing costly functions with simple constraints: A limited-memory projected quasi-Newton algorithm," in Proc. Int. Conf. Artif. Intell. Stat., vol. 5. 2009, pp. 456-463.
    • (2009) Proc. Int. Conf. Artif. Intell. Stat. , vol.5 , pp. 456-463
    • Schmidt, M.1    Berg, E.2    Friedlander, M.3    Murphy, K.4
  • 57
    • 34047174674 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
    • DOI 10.1016/j.cviu.2005.09.012, PII S1077314206001688
    • L. Fei-Fei, R. Fergus, and P. Perona, "Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories," in Proc. CVPR Workshop Generat.-Model Based Vis., 2004, pp. 59-70. (Pubitemid 46528761)
    • (2007) Computer Vision and Image Understanding , vol.106 , Issue.1 , pp. 59-70
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.