메뉴 건너뛰기




Volumn 38, Issue 5, 2012, Pages 1062-1072

Automatic network intrusion detection: Current techniques and open issues

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING; LEARNING SYSTEMS; NETWORK SECURITY; SURVEYS;

EID: 84866355973     PISSN: 00457906     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compeleceng.2012.05.013     Document Type: Article
Times cited : (109)

References (72)
  • 3
    • 27844484884 scopus 로고    scopus 로고
    • Intrusion detection: A survey
    • V. Kumar, J. Srivastava, A. Lazarevic, Massive computing Springer US
    • A. Lazarevic, V. Kumar, and J. Srivastava Intrusion detection: a survey V. Kumar, J. Srivastava, A. Lazarevic, Managing cyber threats Massive computing vol. 5 2005 Springer US 19 78
    • (2005) Managing Cyber Threats , vol.5 , pp. 19-78
    • Lazarevic, A.1    Kumar, V.2    Srivastava, J.3
  • 5
    • 34447280122 scopus 로고    scopus 로고
    • Network anomaly detection with incomplete audit data
    • A. Patcha, and J.-M. Park Network anomaly detection with incomplete audit data Comput Netw 51 2007 3935 3955
    • (2007) Comput Netw , vol.51 , pp. 3935-3955
    • Patcha, A.1    Park, J.-M.2
  • 9
    • 0000231655 scopus 로고    scopus 로고
    • Artificial neural networks for misuse detection
    • Arlington, VA, USA
    • Cannady J. Artificial neural networks for misuse detection. In: National information systems security conference, Arlington, VA, USA; 1998. p. 368-381.
    • (1998) National Information Systems Security Conference , pp. 368-381
    • Cannady, J.1
  • 10
    • 33847406678 scopus 로고    scopus 로고
    • A hierarchical intrusion detection model based on the PCA neural networks
    • G. Liu, Z. Yi, and S. Yang A hierarchical intrusion detection model based on the PCA neural networks Neurocomputing 70 2007 1561 1568
    • (2007) Neurocomputing , vol.70 , pp. 1561-1568
    • Liu, G.1    Yi, Z.2    Yang, S.3
  • 11
    • 79957736179 scopus 로고    scopus 로고
    • Distributed denial of service attack detection using an ensemble of neural classifier
    • P.A.R. Kumar, and S. Selvakumar Distributed denial of service attack detection using an ensemble of neural classifier Comput Commun 34 2011 1328 1341
    • (2011) Comput Commun , vol.34 , pp. 1328-1341
    • Kumar, P.A.R.1    Selvakumar, S.2
  • 13
    • 70350098492 scopus 로고    scopus 로고
    • An intrusion detection approach based on understandable neural network trees
    • Q. Xu, W. Pei, L. Yang, and Q. Zhao An intrusion detection approach based on understandable neural network trees Int J Comput Sci Netw Secur 6 2006 229 234
    • (2006) Int J Comput Sci Netw Secur , vol.6 , pp. 229-234
    • Xu, Q.1    Pei, W.2    Yang, L.3    Zhao, Q.4
  • 14
    • 33845258714 scopus 로고    scopus 로고
    • Evolving intrusion detection systems
    • N. Nedjah, L. Mourelle, A. Abraham, Studies in computational intelligence Springer Berlin/Heidelberg
    • A. Abraham, and C. Grosan Evolving intrusion detection systems N. Nedjah, L. Mourelle, A. Abraham, Genetic systems programming Studies in computational intelligence vol. 13 2006 Springer Berlin/Heidelberg 57 79
    • (2006) Genetic Systems Programming , vol.13 , pp. 57-79
    • Abraham, A.1    Grosan, C.2
  • 15
    • 54949103368 scopus 로고    scopus 로고
    • Using genetic algorithm for network intrusion detection
    • Kansas City, Kansas, Department of Computer Science and Engineering, Mississippi State University, Mississippi State
    • Li W. Using genetic algorithm for network intrusion detection. In: Proceedings of the United States department of energy cyber security group 2004 training conference, Kansas City, Kansas, Department of Computer Science and Engineering, Mississippi State University, Mississippi State; 2004. p. 24-7.
    • (2004) Proceedings of the United States Department of Energy Cyber Security Group 2004 Training Conference , pp. 24-27
    • Li, W.1
  • 21
    • 77951112240 scopus 로고    scopus 로고
    • Analysis of fuzzy class association rule mining based on genetic network programming
    • Chen C, Mabu S, Yue C, Shimada K, Hirasawa K. Analysis of fuzzy class association rule mining based on genetic network programming. In: ICCAS-SICE; 2009. p. 3480-4.
    • (2009) ICCAS-SICE , pp. 3480-3484
    • Chen, C.1    Mabu, S.2    Yue, C.3    Shimada, K.4    Hirasawa, K.5
  • 22
    • 79951578112 scopus 로고    scopus 로고
    • Design and analysis of genetic fuzzy systems for intrusion detection in computer networks
    • M.S. Abadeh, H. Mohamadi, and J. Habibi Design and analysis of genetic fuzzy systems for intrusion detection in computer networks Expert Syst Appl 38 2011 7067 7075
    • (2011) Expert Syst Appl , vol.38 , pp. 7067-7075
    • Abadeh, M.S.1    Mohamadi, H.2    Habibi, J.3
  • 27
    • 84943383590 scopus 로고    scopus 로고
    • Identifying important features for intrusion detection using support vector machines and neural networks
    • Sung A, Mukkamala S. Identifying important features for intrusion detection using support vector machines and neural networks. In: Proceedings of 2003 symposium on applications and the internet; 2003. p. 209-16.
    • (2003) Proceedings of 2003 Symposium on Applications and the Internet , pp. 209-216
    • Sung, A.1    Mukkamala, S.2
  • 29
    • 74049129143 scopus 로고    scopus 로고
    • ANTIDS: Self organized ant-based clustering model for intrusion detection system
    • A. Abraham, Y. Dote, T. Furuhashi, M. Koppen, A. Ohuchi, Y. Ohsawa, Advances in intelligent and soft computing Springer Berlin/Heidelberg
    • V. Ramos, and A. Abraham ANTIDS: self organized ant-based clustering model for intrusion detection system A. Abraham, Y. Dote, T. Furuhashi, M. Koppen, A. Ohuchi, Y. Ohsawa, Soft computing as transdisciplinary science and technology Advances in intelligent and soft computing vol. 29 2005 Springer Berlin/Heidelberg 977 986
    • (2005) Soft Computing As Transdisciplinary Science and Technology , vol.29 , pp. 977-986
    • Ramos, V.1    Abraham, A.2
  • 31
    • 38049000804 scopus 로고    scopus 로고
    • An improved ant-based classifier for intrusion detection
    • J. He, D. Long, and C. Chen An improved ant-based classifier for intrusion detection Int Conf Nat Comput 4 2007 819 823
    • (2007) Int Conf Nat Comput , vol.4 , pp. 819-823
    • He, J.1    Long, D.2    Chen, C.3
  • 32
    • 58149263390 scopus 로고    scopus 로고
    • A PSO-based approach to rule learning in network intrusion detection
    • B.-Y. Cao, Advances in intelligent and soft computing Springer Berlin/Heidelberg
    • C. Guolong, C. Qingliang, and G. Wenzhong A PSO-based approach to rule learning in network intrusion detection B.-Y. Cao, Fuzzy information and engineering Advances in intelligent and soft computing vol. 40 2007 Springer Berlin/Heidelberg 666 673
    • (2007) Fuzzy Information and Engineering , vol.40 , pp. 666-673
    • Guolong, C.1    Qingliang, C.2    Wenzhong, G.3
  • 34
    • 0038330235 scopus 로고    scopus 로고
    • Fusion of multiple classifiers for intrusion detection in computer networks
    • G. Giacinto, F. Roli, and L. Didaci Fusion of multiple classifiers for intrusion detection in computer networks Pattern Recognit Lett 24 2003 1795 1803
    • (2003) Pattern Recognit Lett , vol.24 , pp. 1795-1803
    • Giacinto, G.1    Roli, F.2    Didaci, L.3
  • 35
  • 47
    • 79251595062 scopus 로고    scopus 로고
    • Using clustering to improve the knn-based classifiers for online anomaly network traffic identification
    • M.-Y. Su Using clustering to improve the knn-based classifiers for online anomaly network traffic identification J Netw Comput Appl 34 2011 722 730
    • (2011) J Netw Comput Appl , vol.34 , pp. 722-730
    • Su, M.-Y.1
  • 48
    • 77954024153 scopus 로고    scopus 로고
    • A model based on hybrid support vector machine and self-organizing map for anomaly detection
    • F. Wang, Y. Qian, Y. Dai, and Z. Wang A model based on hybrid support vector machine and self-organizing map for anomaly detection Int Conf Commun Mobile Comput 1 2010 97 101
    • (2010) Int Conf Commun Mobile Comput , vol.1 , pp. 97-101
    • Wang, F.1    Qian, Y.2    Dai, Y.3    Wang, Z.4
  • 50
    • 35348821822 scopus 로고    scopus 로고
    • Intrusion detection in computer networks by a modular ensemble of one-class classifiers
    • G. Giacinto, R. Perdisci, M. Del Rio, and F. Roli Intrusion detection in computer networks by a modular ensemble of one-class classifiers Inform Fusion 9 2008 69 82
    • (2008) Inform Fusion , vol.9 , pp. 69-82
    • Giacinto, G.1    Perdisci, R.2    Del Rio, M.3    Roli, F.4
  • 52
    • 85006210403 scopus 로고    scopus 로고
    • Review on computational trust and reputation models
    • J. Sabater, and C. Sierra Review on computational trust and reputation models Artif Intell Rev 24 2005 33 60
    • (2005) Artif Intell Rev , vol.24 , pp. 33-60
    • Sabater, J.1    Sierra, C.2
  • 53
    • 0033295259 scopus 로고    scopus 로고
    • Bro: A system for detecting network intruders in real-time
    • V. Paxson Bro: a system for detecting network intruders in real-time Comput Netw 31 1999 2435 2463
    • (1999) Comput Netw , vol.31 , pp. 2435-2463
    • Paxson, V.1
  • 57
    • 0026225958 scopus 로고
    • Local area network characteristics, with implications for broadband network congestion management
    • H. Fowler, and W. Leland Local area network characteristics, with implications for broadband network congestion management IEEE J Select Areas Commun 9 1991 1139 1149
    • (1991) IEEE J Select Areas Commun , vol.9 , pp. 1139-1149
    • Fowler, H.1    Leland, W.2
  • 59
    • 33847290520 scopus 로고    scopus 로고
    • Mining anomalies using traffic feature distributions
    • A. Lakhina, M. Crovella, and C. Diot Mining anomalies using traffic feature distributions SIGCOMM Comput Commun Rev 35 2005 217 228
    • (2005) SIGCOMM Comput Commun Rev , vol.35 , pp. 217-228
    • Lakhina, A.1    Crovella, M.2    Diot, C.3
  • 61
    • 78249238161 scopus 로고    scopus 로고
    • Detecting network anomalies in backbone networks
    • S. Jha, R. Sommer, C. Kreibich, Lecture notes in computer science Springer Berlin/Heidelberg
    • C. Callegari, L. Gazzarrini, S. Giordano, M. Pagano, and T. Pepe Detecting network anomalies in backbone networks S. Jha, R. Sommer, C. Kreibich, Recent advances in intrusion detection Lecture notes in computer science vol. 6307 2010 Springer Berlin/Heidelberg 490 491
    • (2010) Recent Advances in Intrusion Detection , vol.6307 , pp. 490-491
    • Callegari, C.1    Gazzarrini, L.2    Giordano, S.3    Pagano, M.4    Pepe, T.5
  • 62
    • 62249168871 scopus 로고    scopus 로고
    • A hybrid intrusion detection system design for computer network security
    • M.A. AydIn, A.H. Zaim, and K.G. Ceylan A hybrid intrusion detection system design for computer network security Comput Electr Eng 35 2009 517 526
    • (2009) Comput Electr Eng , vol.35 , pp. 517-526
    • Aydin, M.A.1    Zaim, A.H.2    Ceylan, K.G.3
  • 63
    • 33847743856 scopus 로고    scopus 로고
    • Hybrid intrusion detection with weighted signature generation over anomalous internet episodes
    • K. Hwang, M. Cai, Y. Chen, and M. Qin Hybrid intrusion detection with weighted signature generation over anomalous internet episodes IEEE Trans Depend Secure Comput 4 2007 41 55
    • (2007) IEEE Trans Depend Secure Comput , vol.4 , pp. 41-55
    • Hwang, K.1    Cai, M.2    Chen, Y.3    Qin, M.4
  • 64
    • 85075837457 scopus 로고    scopus 로고
    • Botminer: Clustering analysis of network traffic for protocol- and structure-independent botnet detection
    • USENIX Association Berkeley, CA, USA
    • G. Gu, R. Perdisci, J. Zhang, and W. Lee Botminer: clustering analysis of network traffic for protocol- and structure-independent botnet detection Proceedings of the 17th conference on Security symposium, USENIX 2008 USENIX Association Berkeley, CA, USA 139 154
    • (2008) Proceedings of the 17th Conference on Security Symposium, USENIX , pp. 139-154
    • Gu, G.1    Perdisci, R.2    Zhang, J.3    Lee, W.4
  • 67
    • 84857255431 scopus 로고    scopus 로고
    • Revisiting traffic anomaly detection using software defined networking
    • R. Sommer, D. Balzarotti, G. Maier, Lecture notes in computer science Springer Berlin/Heidelberg
    • S. Mehdi, J. Khalid, and S. Khayam Revisiting traffic anomaly detection using software defined networking R. Sommer, D. Balzarotti, G. Maier, Recent advances in intrusion detection Lecture notes in computer science vol. 6961 2011 Springer Berlin/Heidelberg 161 180
    • (2011) Recent Advances in Intrusion Detection , vol.6961 , pp. 161-180
    • Mehdi, S.1    Khalid, J.2    Khayam, S.3
  • 68
    • 0034300835 scopus 로고    scopus 로고
    • Improving intrusion detection performance using keyword selection and neural networks
    • R.P. Lippmann, and R.K. Cunningham Improving intrusion detection performance using keyword selection and neural networks Comput Netw 34 2000 597 603
    • (2000) Comput Netw , vol.34 , pp. 597-603
    • Lippmann, R.P.1    Cunningham, R.K.2
  • 70
    • 34548478323 scopus 로고    scopus 로고
    • Security aspects in ipv6 networks - Implementation and testing
    • D. Zagar, K. Grgic, and S. Rimac-Drlje Security aspects in ipv6 networks - implementation and testing Comput Electr Eng 33 2007 425 437
    • (2007) Comput Electr Eng , vol.33 , pp. 425-437
    • Zagar, D.1    Grgic, K.2    Rimac-Drlje, S.3
  • 71
    • 78249274602 scopus 로고    scopus 로고
    • Generating client workloads and high-fidelity network traffic for controllable, repeatable experiments in computer security
    • S. Jha, R. Sommer, C. Kreibich, Lecture notes in computer science Springer Berlin/Heidelberg
    • C. Wright, C. Connelly, T. Braje, J. Rabek, L. Rossey, and R. Cunningham Generating client workloads and high-fidelity network traffic for controllable, repeatable experiments in computer security S. Jha, R. Sommer, C. Kreibich, Recent advances in intrusion detection Lecture notes in computer science vol. 6307 2010 Springer Berlin/Heidelberg 218 237
    • (2010) Recent Advances in Intrusion Detection , vol.6307 , pp. 218-237
    • Wright, C.1    Connelly, C.2    Braje, T.3    Rabek, J.4    Rossey, L.5    Cunningham, R.6
  • 72
    • 84859430323 scopus 로고    scopus 로고
    • Toward developing a systematic approach to generate benchmark datasets for intrusion detection
    • A. Shiravi, H. Shiravi, M. Tavallaee, and A.A. Ghorbani Toward developing a systematic approach to generate benchmark datasets for intrusion detection Comput Secur 31 2012 357 374
    • (2012) Comput Secur , vol.31 , pp. 357-374
    • Shiravi, A.1    Shiravi, H.2    Tavallaee, M.3    Ghorbani, A.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.