메뉴 건너뛰기




Volumn 33, Issue 5-6, 2007, Pages 438-451

Improving network security using genetic algorithm approach

Author keywords

Genetic algorithm; Intrusion detection; Principal component analysis

Indexed keywords

DATA ACQUISITION; GENETIC ALGORITHMS; INTRUSION DETECTION; PRINCIPAL COMPONENT ANALYSIS;

EID: 34548490738     PISSN: 00457906     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compeleceng.2007.05.010     Document Type: Article
Times cited : (78)

References (33)
  • 1
    • 84955580290 scopus 로고    scopus 로고
    • Balasubramaniyan JS, Garcia-Fernandez JO, Isaco D, Spatford E, Zamboni D. An architecture for intrusion detection using autonomous agents. In: Proceedings of 14th annual computer security applications conference, 1998.
  • 2
    • 34548496082 scopus 로고    scopus 로고
    • Heberlein LT, Mukherjee B, Levitt KN, Mansur DL. Towards Detecting Intrusions in a Networked Environment. In: Proceedings of 14th department of energy computer security group conference, 1991.
  • 3
    • 0029756282 scopus 로고    scopus 로고
    • Cooperating security managers: a peer-based intrusion detection system
    • White B., Fich E.A., and Pooch U.W. Cooperating security managers: a peer-based intrusion detection system. IEEE Network J Jan/Feb (1996) 20-23
    • (1996) IEEE Network J , Issue.Jan-Feb , pp. 20-23
    • White, B.1    Fich, E.A.2    Pooch, U.W.3
  • 4
    • 27544469503 scopus 로고    scopus 로고
    • Yao JT, Zhao SL, Saxton LV. A study on fuzzy intrusion detection. In: Belur V. Dasarathy, editor. In Proceedings of SPIE Vol. 5812, Data Mining, Intrusion Detection, Information Assurance, And Data Networks Security, 28 March-1 April 2005, Orlando, Florida, USA: SPIE, Bellingham, WA; 2005. p. 23-30.
  • 5
    • 34548482569 scopus 로고    scopus 로고
    • KDD Cup 1999 data. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, October 1999.
  • 6
    • 85019691440 scopus 로고    scopus 로고
    • Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA IDS evaluation as performed by Lincoln laboratory
    • November
    • McHugh J. Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA IDS evaluation as performed by Lincoln laboratory. ACM Trans Inform Syst Security 3 4 (2000) 262-294 November
    • (2000) ACM Trans Inform Syst Security , vol.3 , Issue.4 , pp. 262-294
    • McHugh, J.1
  • 7
    • 33646851992 scopus 로고    scopus 로고
    • Gong RH, Zulkernine M, Abolmaesumi P. A software implementation of a genetic algorithm based approach to network intrusion detection. In: Proceedings of the sixth international conference on software engineering, artificial intelligence, networking and parallel/distributed computing and first ACIS international workshop on self-assembling wireless networks (SNPD/SAWN'05), 2005.
  • 8
    • 4344588856 scopus 로고    scopus 로고
    • Detecting new forms of network intrusion using genetic programming
    • Lu W., and Traore I. Detecting new forms of network intrusion using genetic programming. Comput Intell 20 3 (2004) 470-490
    • (2004) Comput Intell , vol.20 , Issue.3 , pp. 470-490
    • Lu, W.1    Traore, I.2
  • 9
    • 34548512299 scopus 로고    scopus 로고
    • Kayacik HG, Zincir-Heywood AN, Heywood MI. Selecting Features for Intrusion Detection: A Feature Relevance Analysis on KDD99 Intrusion Detection Datasets. .
  • 10
    • 34548492793 scopus 로고    scopus 로고
    • Fodor IK. A Survey of Dimension Reduction Techniques. .
  • 13
    • 0003254909 scopus 로고
    • Adaptation in natural and artificial system
    • The University of Michigan Press
    • Holland J. Adaptation in natural and artificial system. Ann Arbor (1975), The University of Michigan Press
    • (1975) Ann Arbor
    • Holland, J.1
  • 14
    • 34548485628 scopus 로고    scopus 로고
    • Polhlheim H, Genetic and Evolutionary Algorithms: Principles, Methods and Algorithms. , accessed in 2006.
  • 15
    • 34548508246 scopus 로고    scopus 로고
    • Chittur A. Model Generation for an Intrusion Detection System Using Genetic Algorithms, http://www1.cs.columbia.edu/ids/publications/gaids-thesis01.pdf, accessed in 2006.
  • 16
    • 34548473142 scopus 로고    scopus 로고
    • Kendall K. A database of computer attacks for the evaluation of intrusion detection systems. , accessed in 2005.
  • 17
    • 1542285202 scopus 로고    scopus 로고
    • Pan Z, Chen S, Hu G, Zhang D. Hybrid Neural Network and C4.5 for Misuse Detection. In: Proceedings of the second international conference on machine learning and cybernetics, vol. 4. 2003. pp. 2463-2467 [Nov.].
  • 18
    • 27244445673 scopus 로고    scopus 로고
    • Folino G, Pizzuti C, Spezzano G. GP ensemble for distributed intrusion detection systems. In ICAPR 2005, 3rd international conference on advances in pattern recognition, LNCS, Springer Verlag, 3686/2005, Bath, UK, August 2005.
  • 20
    • 0141540496 scopus 로고    scopus 로고
    • Guan Y, Ghorbani AA, Belacel N, Y-means. A Clustering method for Intrusion Detection. In Canadian conference on electrical and computer engineering, IEEE CCECE, vol. 2. 2003. p. 1083-6.
  • 21
    • 33646390798 scopus 로고    scopus 로고
    • Kim DS, Ha-Nam Nguyen, Jong Sou Park. Genetic algorithm to improve SVM based network intrusion detection system. In: Proceedings of the 19th international conference on advanced informational networking and applications, vol. 2. 2005. p. 155-8.
  • 22
    • 34548485112 scopus 로고    scopus 로고
    • Yao JT, Zhao SL, Saxton LV. A study on fuzzy intrusion detection. data mining, intrusion detection, information assurance, and data networks security 2005. Orlando FL: 2005; [28-29 March].
  • 24
    • 34548475136 scopus 로고    scopus 로고
    • Joshi SS, Phoha VV. Investigating hidden Markov model capabilities in anomaly detection. ACM Regional Conference. In Proceedings of the 43rd annual southeast regional conference, vol. 1, 2005; p. 98-103.
  • 25
    • 34548498914 scopus 로고    scopus 로고
    • .
  • 26
    • 34548509270 scopus 로고    scopus 로고
    • Institute of Mathematics and Computer Science Number 2(32), p. 163-87
    • Sklavos N., and Koufopavlou O. Mobile communications world: security implementations aspects - a state of the art. CSJM J vol. 11 (2003), Institute of Mathematics and Computer Science Number 2(32), p. 163-87
    • (2003) CSJM J , vol.11
    • Sklavos, N.1    Koufopavlou, O.2
  • 27
    • 34548487824 scopus 로고    scopus 로고
    • Lough DL. A Taxonomy of Computer Attacks with Applications to Wireless Networks. PhD Dissertation. .
  • 28
    • 34548485629 scopus 로고    scopus 로고
    • Jon Postel. Transmission control protocol: DARPA Internet Program protocol specification. Request for Comments (RFC) 793, September 1981. InternetEngineering Task Force; .
  • 30
    • 85177165150 scopus 로고    scopus 로고
    • Borisov N, Ian Goldberg, Wagner D. Intercepting mobile communications: the insecurity of 802.11. In The seventh annual international Conference on Mobile computing and networking. Rome: 2001. p. 180-9.
  • 31
    • 0020798977 scopus 로고
    • Development in linear regression methodology: 1959-1982
    • Hocking R.R. Development in linear regression methodology: 1959-1982. Technometrics 25 (1983) 219-249
    • (1983) Technometrics , vol.25 , pp. 219-249
    • Hocking, R.R.1
  • 32
    • 0000146283 scopus 로고
    • Discarding variables in principal component analysis. I: artificial data
    • Jolliffe I.T. Discarding variables in principal component analysis. I: artificial data. Appl Statist 21 (1972) 160-172
    • (1972) Appl Statist , vol.21 , pp. 160-172
    • Jolliffe, I.T.1
  • 33
    • 0002457803 scopus 로고
    • Selection of variables to preserve multivariate data structure, using principal component analysis
    • Krzanowski W.J. Selection of variables to preserve multivariate data structure, using principal component analysis. Appl Stat - J Roy Stat Soc Series C 36 (1987) 22-33
    • (1987) Appl Stat - J Roy Stat Soc Series C , vol.36 , pp. 22-33
    • Krzanowski, W.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.