메뉴 건너뛰기




Volumn 38, Issue 6, 2011, Pages 7067-7075

Design and analysis of genetic fuzzy systems for intrusion detection in computer networks

Author keywords

Combinatorial problems; Fuzzy rule extraction; Genetic algorithms; Intrusion detection; Learning; Pattern recognition

Indexed keywords

ABNORMAL BEHAVIOR; APPROXIMATE REASONING; COMBINATORIAL PROBLEM; DATA SETS; DESIGN AND ANALYSIS; FUZZY RULE EXTRACTION; FUZZY RULE SET; GENETIC FUZZY SYSTEMS; HIGH-DIMENSIONAL; INTRUSION DETECTION SYSTEMS; LEARNING; LEARNING CAPABILITIES; MICHIGAN; PITTSBURGH; REAL-WORLD APPLICATION; RULE LEARNING;

EID: 79951578112     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2010.12.006     Document Type: Article
Times cited : (63)

References (56)
  • 1
    • 0029242750 scopus 로고
    • A method for fuzzy rules extraction directly from numerical data and its application to pattern classification
    • S. Abe, and M.-S. Lan A method for fuzzy rules extraction directly from numerical data and its application to pattern classification IEEE Transactions on Fuzzy Systems 3 1 1995 18 28
    • (1995) IEEE Transactions on Fuzzy Systems , vol.3 , Issue.1 , pp. 18-28
    • Abe, S.1    Lan, M.-S.2
  • 3
    • 0003516333 scopus 로고    scopus 로고
    • Intrusion detection systems: A survey and taxonomy
    • Department of Computer Engineering, Chalmers University of Technology, Sweden
    • Axelsson, S. (2000). Intrusion detection systems: A survey and taxonomy. Technical report no. 99-15. Department of Computer Engineering, Chalmers University of Technology, Sweden.
    • (2000) Technical Report No. 99-15
    • Axelsson, S.1
  • 8
    • 2942533003 scopus 로고    scopus 로고
    • SAD: Web session anomaly detection based on parameter estimation
    • S. Cho, and S. Cha SAD: Web session anomaly detection based on parameter estimation Computers & Security 23 4 2004 265 351
    • (2004) Computers & Security , vol.23 , Issue.4 , pp. 265-351
    • Cho, S.1    Cha, S.2
  • 9
    • 2942533003 scopus 로고    scopus 로고
    • SAD: Web session anomaly detection based on parameter estimation
    • S. Cho, and S. Cha SAD: Web session anomaly detection based on parameter estimation Computers & Security 23 4 2004 265 351
    • (2004) Computers & Security , vol.23 , Issue.4 , pp. 265-351
    • Cho, S.1    Cha, S.2
  • 14
    • 0036079474 scopus 로고    scopus 로고
    • Discovering interesting classification rules with genetic programming
    • I. De Falco, A.D. Cioppa, and E. Tarantino Discovering interesting classification rules with genetic programming Applied Soft Computing 23 2002 1 13
    • (2002) Applied Soft Computing , vol.23 , pp. 1-13
    • De Falco, I.1    Cioppa, A.D.2    Tarantino, E.3
  • 15
    • 0038428854 scopus 로고    scopus 로고
    • Results of the KDD-99 classifier learning
    • C. Elkan Results of the KDD-99 classifier learning ACM SIGKDD Explorations 1 2000 63 64
    • (2000) ACM SIGKDD Explorations , vol.1 , pp. 63-64
    • Elkan, C.1
  • 23
    • 1642434409 scopus 로고
    • The architecture of network level intrusion detection system
    • Department of Computer Science, University of New Mexico
    • Heady, R.; Luger, G.; Maccabe, A.; Servilla, M. (1990). The architecture of network level intrusion detection system. Technical Report. Department of Computer Science, University of New Mexico.
    • (1990) Technical Report
    • Heady, R.1    Luger, G.2    MacCabe, A.3    Servilla, M.4
  • 24
    • 0347411204 scopus 로고    scopus 로고
    • Combining boosting and evolutionary algorithms for learning of fuzzy classification rules
    • F. Hofmann Combining boosting and evolutionary algorithms for learning of fuzzy classification rules Fuzzy Sets and Systems 2004 47 58
    • (2004) Fuzzy Sets and Systems , pp. 47-58
    • Hofmann, F.1
  • 26
    • 0037230859 scopus 로고    scopus 로고
    • Finding fuzzy classification rules using data mining techniques
    • DOI 10.1016/S0167-8655(02)00273-8, PII S0167865502002738
    • Y.-C. Hu, R.-S. Chen, and G.-H. Tzeng Finding fuzzy classification rules using data mining techniques Pattern Recognition Letters 24 2003 509 519 (Pubitemid 36080792)
    • (2003) Pattern Recognition Letters , vol.24 , Issue.1-3 , pp. 509-519
    • Hu, Y.-C.1    Chen, R.-S.2    Tzeng, G.-H.3
  • 28
    • 0035426682 scopus 로고    scopus 로고
    • Three-objective genetics-based machine learning for linguistic rule extraction
    • DOI 10.1016/S0020-0255(01)00144-X, PII S002002550100144X
    • H. Ishibuchi, T. Nakashima, and T. Murata Three-objective genetics-based machine learning for linguistic rule extraction Information Sciences 2001 109 133 (Pubitemid 32621497)
    • (2001) Information Sciences , vol.136 , Issue.1-4 , pp. 109-133
    • Ishibuchi, H.1    Nakashima, T.2    Murata, T.3
  • 29
    • 0002197262 scopus 로고
    • Distributed representation of fuzzy rules and its application to pattern classification
    • H. Ishibuchi, K. Nozaki, and H. Tanaka Distributed representation of fuzzy rules and its application to pattern classification Fuzzy Sets and Systems 52 1 1992 21 32
    • (1992) Fuzzy Sets and Systems , vol.52 , Issue.1 , pp. 21-32
    • Ishibuchi, H.1    Nozaki, K.2    Tanaka, H.3
  • 30
    • 0346781550 scopus 로고    scopus 로고
    • Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining
    • H. Ishibuchi, and T. Yamamoto Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining Fuzzy Sets and Systems 141 2004 59 88
    • (2004) Fuzzy Sets and Systems , vol.141 , pp. 59-88
    • Ishibuchi, H.1    Yamamoto, T.2
  • 34
    • 0025405010 scopus 로고
    • Fuzzy logic in control systems: Fuzzy logic controller, Part i and Part II
    • C.C. Lee Fuzzy logic in control systems: Fuzzy logic controller, Part I and Part II IEEE Transactions on Systems, Man, and Cybernetics 20 2 1990 404 435
    • (1990) IEEE Transactions on Systems, Man, and Cybernetics , vol.20 , Issue.2 , pp. 404-435
    • Lee, C.C.1
  • 39
    • 0242489523 scopus 로고    scopus 로고
    • Feature selection for intrusion detection using neural networks and support vector machines
    • Transport research record no. 1822
    • Mukkamala, S.; Sung, A. H. (2003). Feature selection for intrusion detection using neural networks and support vector machines. Journal of the Transport Research Board National Academy. Transport research record no. 1822, pp. 33-39.
    • (2003) Journal of the Transport Research Board National Academy , pp. 33-39
    • Mukkamala, S.1    Sung, A.H.2
  • 41
    • 0242468747 scopus 로고    scopus 로고
    • An anomaly intrusion detection method by clustering normal user behavior
    • S.H. Oh, and W.S. Lee An anomaly intrusion detection method by clustering normal user behavior Computers & Security 22 7 2003 596 612
    • (2003) Computers & Security , vol.22 , Issue.7 , pp. 596-612
    • Oh, S.H.1    Lee, W.S.2
  • 42
    • 33750512162 scopus 로고    scopus 로고
    • Intrusion detection by integrating boosting genetic fuzzy classifier and data mining criteria for rule pre-screening
    • DOI 10.1016/j.jnca.2005.06.002, PII S1084804505000433, Network and Information Security: A Computational Intelligence Approach
    • T. Ozyer, R. Alhajj, and K. Barker Intrusion detection by integrating boosting genetic fuzzy classifier and data mining criteria for rule pre-screening Journal of Network and Computer Applications 30 2007 99 113 (Pubitemid 44666485)
    • (2007) Journal of Network and Computer Applications , vol.30 , Issue.1 , pp. 99-113
    • Ozyer, T.1    Alhajj, R.2    Barker, K.3
  • 44
    • 0033665636 scopus 로고    scopus 로고
    • Searching the forest: Using decision trees as building blocks for evolutionary search in classification databases
    • Rouwhorst, S. E.; Engelbrecht, A. P. (2000). Searching the forest: Using decision trees as building blocks for evolutionary search in classification databases. In Proceedings of IEEE congress evolutionary computation (Vol. 1, pp. 633-638).
    • (2000) Proceedings of IEEE Congress Evolutionary Computation , vol.1 , pp. 633-638
    • Rouwhorst, S.E.1    Engelbrecht, A.P.2
  • 46
    • 33750528950 scopus 로고    scopus 로고
    • Intrusion detection using a fuzzy genetics-based learning algorithm
    • DOI 10.1016/j.jnca.2005.05.002, PII S1084804505000305, Network and Information Security: A Computational Intelligence Approach
    • M. Saniee Abadeh, J. Habibi, and C. Lucas Intrusion detection using a fuzzy genetics-based learning algorithm Journal of Network and Computer Applications 30 1 2007 414 428 (Pubitemid 44666474)
    • (2007) Journal of Network and Computer Applications , vol.30 , Issue.1 , pp. 414-428
    • Abadeh, M.S.1    Habibi, J.2    Lucas, C.3
  • 47
    • 0022098324 scopus 로고
    • An introductory survey of fuzzy control
    • M. Sugeno An introductory survey of fuzzy control Information Sciences 36 1/2 1985 59 83
    • (1985) Information Sciences , vol.36 , Issue.1 , pp. 59-83
    • Sugeno, M.1
  • 48
    • 0037291442 scopus 로고    scopus 로고
    • Evolutionary computing for knowledge discovery in medical diagnosis
    • DOI 10.1016/S0933-3657(03)00002-2
    • K.C. Tan, Q. Yu, C.M. Heng, and T.H. Lee Evolutionary computing for knowledge discovery in medical diagnosis Artificial Intelligence in Medicine 27 2003 129 154 (Pubitemid 36294091)
    • (2003) Artificial Intelligence in Medicine , vol.27 , Issue.2 , pp. 129-154
    • Tan, K.C.1    Yu, Q.2    Heng, C.M.3    Lee, T.H.4
  • 49
    • 33745139496 scopus 로고    scopus 로고
    • Intrusion detection combining multiple decision trees by fuzzy logic
    • DOI 10.1109/PDCAT.2005.157, 1578909, Proceedings - Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies, PDCAT 2005
    • Tian, J.-F.; Ying X.; Yue F.; Wang, J.-L. (2005). Intrusion detection combining multiple decision trees by fuzzy logic. In Sixth international conference on parallel and distributed computing, applications and technologies (pp. 256-258). (Pubitemid 43897696)
    • (2005) Parallel and Distributed Computing, Applications and Technologies, PDCAT Proceedings , vol.2005 , pp. 256-258
    • Tian, J.-F.1    Fu, Y.2    Xu, Y.3    Wang, J.-L.4
  • 51
    • 33847113954 scopus 로고    scopus 로고
    • Application of support vector clustering algorithm to network intrusion detection
    • ICNN&B '05
    • Xu, B.; Zhang, A. (2005). Application of support vector clustering algorithm to network intrusion detection. In International conference on neural networks and brain 2005, ICNN&B '05 (Vol. 2, pp. 1036-1040).
    • (2005) International Conference on Neural Networks and Brain 2005 , vol.2 , pp. 1036-1040
    • Xu, B.1    Zhang, A.2
  • 55
    • 10244261530 scopus 로고    scopus 로고
    • EWMA forecast of normal system activity for computer intrusion detection
    • N. Ye, Qiang Chen, and Connie M. Borror EWMA forecast of normal system activity for computer intrusion detection IEEE Transactions on Reliability 53 4 2004
    • (2004) IEEE Transactions on Reliability , vol.53 , Issue.4
    • Ye, N.1    Chen, Q.2    Borror, C.M.3
  • 56
    • 0037333205 scopus 로고    scopus 로고
    • Computer intrusion detection through EWMA for autocorrelated and uncorrelated data
    • N. Ye, S. Vilbert, and Q. Chen Computer intrusion detection through EWMA for autocorrelated and uncorrelated data IEEE Transactions on Reliability 52 1 2003
    • (2003) IEEE Transactions on Reliability , vol.52 , Issue.1
    • Ye, N.1    Vilbert, S.2    Chen, Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.