메뉴 건너뛰기




Volumn 16, Issue 9, 2012, Pages 1627-1637

RTS game strategy evaluation using extreme learning machine

Author keywords

Extreme learning machine; Feature interaction; Real time strategy (RTS) game; Warcraft

Indexed keywords

COMPLEX INTERACTION; DECISION MODELS; EXTREME LEARNING MACHINE; FEATURE INTERACTIONS; FUZZY MEASURES; GAME RULES; GAME STRATEGIES; MILITARY UNITS; PRODUCTION SEQUENCES; REAL TIME STRATEGIES; REAL-TIME STRATEGY GAMES; TREE-BASED; UNIT GROUP; WARCRAFT; WEIGHTED AVERAGE MODELS;

EID: 84866239975     PISSN: 14327643     EISSN: 14337479     Source Type: Journal    
DOI: 10.1007/s00500-012-0831-7     Document Type: Article
Times cited : (11)

References (46)
  • 2
    • 84861524095 scopus 로고    scopus 로고
    • Handwritten Character Recognition Using Wavelet Energy and Extreme Learning Machine
    • doi: 10. 1007/s13042-011-0049-5
    • Chacko BP, Vimal Krishnan VR, Raju G, Babu Anto P (2011) Handwritten character recognition using wavelet energy and extreme learning machine. Int J Mach Learn Cybern doi: 10. 1007/s13042-011-0049-5.
    • (2011) Int J Mach Learn Cybern
    • Chacko, B.P.1    Vimal, K.V.R.2    Raju, G.3    Babu, A.P.4
  • 3
    • 84861491718 scopus 로고    scopus 로고
    • Non-parametric kernel learning with robust pairwise constraints
    • doi: 10. 1007/s13042-011-0048-6
    • Chen C-Y, Zhang J-P, He X-F, Zhou Z-H (2011) Non-parametric kernel learning with robust pairwise constraints. Int J Mach Learn Cybern. doi: 10. 1007/s13042-011-0048-6.
    • (2011) Int J Mach Learn Cybern
    • Chen, C.-Y.1    Zhang, J.-P.2    He, X.-F.3    Zhou, Z.-H.4
  • 5
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes C, Vapnik V (1995) Support vector networks. Mach Learn 20(3): 273-297.
    • (1995) Mach Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 7
    • 68949200808 scopus 로고    scopus 로고
    • Error minimized extreme learning machine with growth of hidden nodes and incremental learning
    • Feng G, Huang G-B, Lin Q, Gay R (2009) Error minimized extreme learning machine with growth of hidden nodes and incremental learning. Neural Netw 20: 1352-1357.
    • (2009) Neural Netw , vol.20 , pp. 1352-1357
    • Feng, G.1    Huang, G.-B.2    Lin, Q.3    Gay, R.4
  • 11
    • 84942484786 scopus 로고
    • Ridge regression: biased estimation for nonorthogonal problems
    • Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1): 55-67.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 12
    • 56349163852 scopus 로고    scopus 로고
    • Building a player strategy model by analyzing replays of real-time strategy games
    • Hongkong, China, June 2008
    • Hsieh JL, Sun CT (2008) Building a player strategy model by analyzing replays of real-time strategy games. In: Proceedings of IEEE international joint conference on neural networks, Hongkong, China, June 2008, pp 3106-3111.
    • (2008) Proceedings of IEEE International Joint Conference On Neural Networks , pp. 3106-3111
    • Hsieh, J.L.1    Sun, C.T.2
  • 13
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • Huang G-B, Chen L (2007) Convex incremental extreme learning machine. Neurocomputing 70: 3056-3062.
    • (2007) Neurocomputing , vol.70 , pp. 3056-3062
    • Huang, G.-B.1    Chen, L.2
  • 14
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • Huang G-B, Chen L (2008) Enhanced random search based incremental extreme learning machine. Neurocomputing 71: 3460-3468.
    • (2008) Neurocomputing , vol.71 , pp. 3460-3468
    • Huang, G.-B.1    Chen, L.2
  • 15
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G-B, Zhu QY, Siew CK (2006a) Extreme learning machine: theory and applications. Neurocomputing 70(1-3): 489-501.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 16
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang G-B, Chen L, Siew C-K (2006b) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17(4): 879-892.
    • (2006) IEEE Trans Neural Netw , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 17
    • 38649131505 scopus 로고    scopus 로고
    • Incremental extreme learning machine with fully complex hidden nodes
    • Huang G-B, Li M-B, Chen L, Siew C-K (2008) Incremental extreme learning machine with fully complex hidden nodes. Neurocomputing 71: 576-583.
    • (2008) Neurocomputing , vol.71 , pp. 576-583
    • Huang, G.-B.1    Li, M.-B.2    Chen, L.3    Siew, C.-K.4
  • 18
    • 78649492473 scopus 로고    scopus 로고
    • Optimization method based extreme learning machine for classification
    • Huang G-B, Ding X, Zhou H (2010) Optimization method based extreme learning machine for classification. Neurocomputing 74: 155-163.
    • (2010) Neurocomputing , vol.74 , pp. 155-163
    • Huang, G.-B.1    Ding, X.2    Zhou, H.3
  • 20
    • 0021981458 scopus 로고
    • A model of human evaluation process using fuzzy measure
    • Ishii K, Sugeno M (1985) A model of human evaluation process using fuzzy measure. Int J Man Mach Stud 22: 19-38.
    • (1985) Int J Man Mach Stud , vol.22 , pp. 19-38
    • Ishii, K.1    Sugeno, M.2
  • 21
  • 22
    • 81255152339 scopus 로고    scopus 로고
    • Positive and negative fuzzy rule system, extreme learning machine and image classification
    • Jun W, Shitong W, Chung F-l (2011) Positive and negative fuzzy rule system, extreme learning machine and image classification. Int J M Learn Cybern 2(4): 261-271.
    • (2011) Int J M Learn Cybern , vol.2 , Issue.4 , pp. 261-271
    • Jun, W.1    Shitong, W.2    Chung, F.-L.3
  • 23
    • 84861486574 scopus 로고    scopus 로고
    • Combining partially global and local characteristics for improved classification
    • doi: 10. 1007/s13042-011-0045-9
    • Ksantini R, Boufama B (2011) Combining partially global and local characteristics for improved classification. Int J Mach Learn Cybern. doi: 10. 1007/s13042-011-0045-9.
    • (2011) Int J Mach Learn Cybern
    • Ksantini, R.1    Boufama, B.2
  • 24
    • 0010717938 scopus 로고    scopus 로고
    • A hierarchical subjective evaluation model using non-monotonic fuzzy measures and the Choquet integral
    • Studies in fuzziness and soft computing, Physica, New York
    • Kwon S, Sugeno M (2000) A hierarchical subjective evaluation model using non-monotonic fuzzy measures and the Choquet integral. In: Fuzzy measures and integrals-theory and applications. Studies in fuzziness and soft computing, Physica, New York, pp 375-391.
    • (2000) Fuzzy Measures and Integrals-theory and Applications , pp. 375-391
    • Kwon, S.1    Sugeno, M.2
  • 28
    • 34047174077 scopus 로고    scopus 로고
    • A fast and accurate on-line sequential learning algorithm for feedforward networks
    • Liang N-Y, Huang G-B, Saratchandran P, Sundararajan N (2006) A fast and accurate on-line sequential learning algorithm for feedforward networks. IEEE Trans Neural Netw 17(6): 1411-1423.
    • (2006) IEEE Trans Neural Netw , vol.17 , Issue.6 , pp. 1411-1423
    • Liang, N.-Y.1    Huang, G.-B.2    Saratchandran, P.3    Sundararajan, N.4
  • 29
    • 44649099490 scopus 로고    scopus 로고
    • Extreme support vector machine classifier
    • Liu Q, He Q, Shi Z (2008) Extreme support vector machine classifier. Lect Notes Comput Sci 5012: 222-233.
    • (2008) Lect Notes Comput Sci , vol.5012 , pp. 222-233
    • Liu, Q.1    He, Q.2    Shi, Z.3
  • 31
    • 0028423624 scopus 로고
    • Non-monotonic fuzzy measures and the Choquet integral
    • Murofushi Michio T, Machida M (1994) Non-monotonic fuzzy measures and the Choquet integral. Fuzzy Sets Syst 64(1): 73-86.
    • (1994) Fuzzy Sets Syst , vol.64 , Issue.1 , pp. 73-86
    • Murofushi Michio, T.1    Machida, M.2
  • 34
    • 70350625071 scopus 로고    scopus 로고
    • A neural-evolutionary model of case-based planning in real time strategy games
    • doi: 10. 1007/978-3-642-02568-6_30
    • Niu B, Wang H, Peter H, Ng F, Simon C, Shiu K (2009) A neural-evolutionary model of case-based planning in real time strategy games. In: Lecture notes in computer science, vol 5579/2009, pp 291-300. doi: 10. 1007/978-3-642-02568-6_30.
    • (2009) In: Lecture Notes In Computer Science , vol.2009-5579 , pp. 291-300
    • Niu, B.1    Wang, H.2    Peter, H.3    Ng, F.4    Simon, C.5    Shiu, K.6
  • 35
    • 39449135585 scopus 로고    scopus 로고
    • Learning from demonstration and case-based planning for real-time strategy games
    • doi: 10. 1007/978-3-540-77465-5_15
    • Ontanon S, Mishra K, Ram A (2008) Learning from demonstration and case-based planning for real-time strategy games. In: Studies in fuzziness and soft computing, vol 226, pp 293-310. doi: 10. 1007/978-3-540-77465-5_15.
    • (2008) Studies In Fuzziness and Soft Computing , vol.226 , pp. 293-310
    • Ontanon, S.1    Mishra, K.2    Ram, A.3
  • 37
    • 0000335868 scopus 로고    scopus 로고
    • The Choquet integral in a rough software cost decision system. Fuzzy measures and integrals: Theory and applications
    • Physica, New York
    • Peters J, Han L, Ramanna S (1999) The Choquet integral in a rough software cost decision system. Fuzzy measures and integrals: theory and applications. Studies in fuzziness and soft computing, Physica, New York, pp 392-414.
    • (1999) Studies In Fuzziness and Soft Computing , pp. 392-414
    • Peters, J.1    Han, L.2    Ramanna, S.3
  • 39
    • 67149088596 scopus 로고    scopus 로고
    • Improving generalization of fuzzy if-then rules by maximizing fuzzy entropy
    • Wang X-Z, Dong C-R (2009) Improving generalization of fuzzy if-then rules by maximizing fuzzy entropy. IEEE Trans Fuzzy Syst 17(3): 556-567.
    • (2009) IEEE Trans Fuzzy Syst , vol.17 , Issue.3 , pp. 556-567
    • Wang, X.-Z.1    Dong, C.-R.2
  • 40
    • 0031020060 scopus 로고    scopus 로고
    • Using neural networks to determine Sugeno measures by statistics
    • Wang J, Wang Z (1997) Using neural networks to determine Sugeno measures by statistics. Neural Netw 10(1): 183-195.
    • (1997) Neural Netw , vol.10 , Issue.1 , pp. 183-195
    • Wang, J.1    Wang, Z.2
  • 41
    • 0347908100 scopus 로고    scopus 로고
    • Genetic algorithms used for determining nonadditive set functions in information fusion
    • Wang Z, Leung KS, Wang J (1997) Genetic algorithms used for determining nonadditive set functions in information fusion. Proc IFSA'97 1: 518-521.
    • (1997) Proc IFSA'97 , vol.1 , pp. 518-521
    • Wang, Z.1    Leung, K.S.2    Wang, J.3
  • 42
    • 0033207395 scopus 로고    scopus 로고
    • Using genetic algorithm to determine non-negative monotone set functions for information fusion in environments with random perturbation
    • Wang ZY, Xu K, Wang J (1999) Using genetic algorithm to determine non-negative monotone set functions for information fusion in environments with random perturbation. Int J Intell Syst 14: 949-962.
    • (1999) Int J Intell Syst , vol.14 , pp. 949-962
    • Wang, Z.Y.1    Xu, K.2    Wang, J.3
  • 43
    • 84887331584 scopus 로고    scopus 로고
    • Architecture selection for networks trained with extreme learning machine using localized generalization error model
    • (submitted)
    • Wang X, Shao Q, Miao Q, Zhai J (2011a) Architecture selection for networks trained with extreme learning machine using localized generalization error model. Neurocomputing (submitted).
    • (2011) Neurocomputing
    • Wang, X.1    Shao, Q.2    Miao, Q.3    Zhai, J.4
  • 44
    • 80051593049 scopus 로고    scopus 로고
    • Upper integral network with extreme learning mechanism
    • Wang X-Z, Chen A-X, Feng H-M (2011b) Upper integral network with extreme learning mechanism. Neurocomputing 74(16): 2520-2525. http://dx. doi. org/10. 1016/j. neucom. 2010. 12. 034.
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2520-2525
    • Wang, X.-Z.1    Chen, A.-X.2    Feng, H.-M.3
  • 45
    • 84863463582 scopus 로고    scopus 로고
    • Maximum ambiguity based sample selection in fuzzy decision tree induction
    • doi:10.1109/TKDE.2011.67
    • Wang X-Z, Dong L-C, Yan J-H (2011c) Maximum ambiguity based sample selection in fuzzy decision tree induction. IEEE Trans Knowl Data Eng. doi: 10. 1109/TKDE. 2011. 67.
    • (2011) IEEE Trans Knowl Data Eng
    • Wang, X.-Z.1    Dong, L.-C.2    Yan, J.-H.3
  • 46
    • 4844229545 scopus 로고    scopus 로고
    • Handling interaction in fuzzy production rule reasoning
    • doi: 10. 1109/TSMCB. 2004. 831460
    • Yeung D, Wang X, Tsang E (2004) Handling interaction in fuzzy production rule reasoning. IEEE Trans Syst Man Cybern Part B Cybern 34: 1979-1987. doi: 10. 1109/TSMCB. 2004. 831460.
    • (2004) IEEE Trans Syst Man Cybern Part B Cybern , vol.34 , pp. 1979-1987
    • Yeung, D.1    Wang, X.2    Tsang, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.