메뉴 건너뛰기




Volumn 6, Issue 2, 2012, Pages 795-830

Sparsity with sign-coherent groups of variables via the cooperative-lasso

Author keywords

Continuous variables; Grouped variables; Microarray analysis; Ordinal variables; Penalization; Sign coherence; Sparsity

Indexed keywords


EID: 84866235748     PISSN: 19326157     EISSN: 19417330     Source Type: Journal    
DOI: 10.1214/11-AOAS520     Document Type: Article
Times cited : (25)

References (37)
  • 1
    • 46249088758 scopus 로고    scopus 로고
    • Consistency of the group lasso and multiple kernel learning
    • MR2417268
    • Bach, F. R. (2008). Consistency of the group lasso and multiple kernel learning. J. Mach. Learn. Res. 9 1179-1225. MR2417268
    • (2008) J. Mach. Learn. Res , vol.9 , pp. 1179-1225
    • Bach, F.R.1
  • 3
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • MR2486527
    • Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2 183-202. MR2486527
    • (2009) SIAM J. Imaging Sci , vol.2 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 4
    • 84874257732 scopus 로고
    • Better subset regression using the nonnegative garrote
    • MR1365720
    • Breiman, L. (1995). Better subset regression using the nonnegative garrote. Technometrics 37 373-384. MR1365720
    • (1995) Technometrics , vol.37 , pp. 373-384
    • Breiman, L.1
  • 5
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of instability and stabilization in model selection
    • MR1425957
    • Breiman, L. (1996). Heuristics of instability and stabilization in model selection. Ann. Statist. 24 2350-2383. MR1425957
    • (1996) Ann. Statist , vol.24 , pp. 2350-2383
    • Breiman, L.1
  • 8
    • 4944239996 scopus 로고    scopus 로고
    • The estimation of prediction error: Covariance penalties and cross-validation
    • MR2090899
    • EFRON, B. (2004). The estimation of prediction error: Covariance penalties and cross-validation. J. Amer. Statist. Assoc. 99 619-642. MR2090899
    • (2004) J. Amer. Statist. Assoc , vol.99 , pp. 619-642
    • Efron, B.1
  • 13
  • 14
    • 84859813876 scopus 로고    scopus 로고
    • Sparse modeling of categorial explanatory variables
    • MR2829951
    • Gertheiss, J. and Tutz, G. (2010). Sparse modeling of categorial explanatory variables. Ann. Appl. Stat. 4 2150-2180. MR2829951
    • (2010) Ann. Appl. Stat , vol.4 , pp. 2150-2180
    • Gertheiss, J.1    Tutz, G.2
  • 15
    • 0041879258 scopus 로고    scopus 로고
    • Outcomes of the equivalence of adaptive ridge with least absolute shrinkage
    • NIPS 1998
    • Grandvalet, Y. and Canu, S. (1999). Outcomes of the equivalence of adaptive ridge with least absolute shrinkage. In Advances in Neural Information Processing Systems 11 (NIPS 1998) 445-451.
    • (1999) Advances In Neural Information Processing Systems , vol.11 , pp. 445-451
    • Grandvalet, Y.1    Canu, S.2
  • 17
    • 58349104057 scopus 로고    scopus 로고
    • Least angle and l1 penalized regression: A review
    • MR2520981
    • Hesterberg, T., Choi, N. H., Meier, L. and Fraley, C. (2008). Least angle and l1 penalized regression: A review. Stat. Surv. 2 61-93. MR2520981
    • (2008) Stat. Surv , vol.2 , pp. 61-93
    • Hesterberg, T.1    Choi, N.H.2    Meier, L.3    Fraley, C.4
  • 18
    • 77955136689 scopus 로고    scopus 로고
    • The benefit of group sparsity
    • MR2676881
    • Huang, J. and Zhang, T. (2010). The benefit of group sparsity. Ann. Statist. 38 1978-2004. MR2676881
    • (2010) Ann. Statist , vol.38 , pp. 1978-2004
    • Huang, J.1    Zhang, T.2
  • 19
    • 84866261835 scopus 로고    scopus 로고
    • Defining a robust biological prior from pathway analysis to drive network inference
    • MR2821224
    • Jeanmougin, M., Guedj, M. and Ambroise, C. (2011). Defining a robust biological prior from pathway analysis to drive network inference. J. SFdS 152 97-110. MR2821224
    • (2011) J. SFdS , vol.152 , pp. 97-110
    • Jeanmougin, M.1    Guedj, M.2    Ambroise, C.3
  • 20
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for lasso-type estimators
    • MR1805787
    • Knight, K. and Fu, W. (2000). Asymptotics for lasso-type estimators. Ann. Statist. 28 1356-1378.MR1805787
    • (2000) Ann. Statist , vol.28 , pp. 1356-1378
    • Knight, K.1    Fu, W.2
  • 21
    • 33947425580 scopus 로고    scopus 로고
    • Supervised group Lasso with applications to microarray data analysis
    • Ma, S., Song, X. and Huang, J. (2007). Supervised group Lasso with applications to microarray data analysis. BMC Bioinformatics 8 60.
    • (2007) BMC Bioinformatics , vol.8 , pp. 60
    • Ma, S.1    Song, X.2    Huang, J.3
  • 23
    • 77949526376 scopus 로고    scopus 로고
    • On the asymptotic properties of the group lasso estimator for linear models
    • MR2426104
    • Nardi, Y. and Rinaldo, A. (2008). On the asymptotic properties of the group lasso estimator for linear models. Electron. J. Stat. 2 605-633. MR2426104
    • (2008) Electron. J. Stat , vol.2 , pp. 605-633
    • Nardi, Y.1    Rinaldo, A.2
  • 25
    • 34147177060 scopus 로고    scopus 로고
    • Averaged gene expressions for regression
    • Park, M. Y., Hastie, T. and Tibshirani, R. (2007). Averaged gene expressions for regression. Biostatistics 8 212-227.
    • (2007) Biostatistics , vol.8 , pp. 212-227
    • Park, M.Y.1    Hastie, T.2    Tibshirani, R.3
  • 27
    • 77249142247 scopus 로고    scopus 로고
    • An active set algorithm to estimate parameters in generalized linear models with ordered predictors
    • MR2600846
    • Rufibach, K. (2010). An active set algorithm to estimate parameters in generalized linear models with ordered predictors. Comput. Statist. Data Anal. 54 1442-1456. MR2600846
    • (2010) Comput. Statist. Data Anal , vol.54 , pp. 1442-1456
    • Rufibach, K.1
  • 28
    • 0642295479 scopus 로고
    • Teaching how to derive directly interpretable coding schemes for multiple regression analysis
    • Serlin, R. C. and Levin, J. R. (1985). Teaching how to derive directly interpretable coding schemes for multiple regression analysis. Journal of Educational Statistics 10 223-238.
    • (1985) Journal of Educational Statistics , vol.10 , pp. 223-238
    • Serlin, R.C.1    Levin, J.R.2
  • 29
    • 0000169918 scopus 로고
    • Estimation of the mean of a multivariate normal distribution
    • MR0630098
    • Stein, C. M. (1981). Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9 1135-1151. MR0630098
    • (1981) Ann. Statist , vol.9 , pp. 1135-1151
    • Stein, C.M.1
  • 30
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • MR1379242
    • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267-288. MR1379242
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 32
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • MR2212574
    • Yuan, M. and Lin, Y. (2006).Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 49-67. MR2212574
    • (2006) J. R. Stat. Soc. Ser. B Stat. Methodol , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 33
    • 33847364905 scopus 로고    scopus 로고
    • On the non-negative garrote estimator
    • MR2325269
    • Yuan, M. and Lin, Y. (2007). On the non-negative garrote estimator. J. R. Stat. Soc. Ser. B Stat. Methodol. 69 143-161. MR2325269
    • (2007) J. R. Stat. Soc. Ser. B Stat. Methodol , vol.69 , pp. 143-161
    • Yuan, M.1    Lin, Y.2
  • 34
    • 69949155103 scopus 로고    scopus 로고
    • The composite absolute penalties family for grouped and hierarchical variable selection
    • MR2549566
    • Zhao, P., Rocha, G. and Yu, B. (2009). The composite absolute penalties family for grouped and hierarchical variable selection. Ann. Statist. 37 3468-3497. MR2549566
    • (2009) Ann. Statist , vol.37 , pp. 3468-3497
    • Zhao, P.1    Rocha, G.2    Yu, B.3
  • 35
    • 77957233032 scopus 로고    scopus 로고
    • Association screening of common and rare genetic variants by penalized regression
    • Zhou, H., Sehl, M. E., Sinsheimer, J. S. and LANGE, K. (2010). Association screening of common and rare genetic variants by penalized regression. Bioinformatics 26 2375-2382.
    • (2010) Bioinformatics , vol.26 , pp. 2375-2382
    • Zhou, H.1    Sehl, M.E.2    Sinsheimer, J.S.3    Lange, K.4
  • 36
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • MR2137327
    • Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 67 301-320. MR2137327
    • (2005) J. R. Stat. Soc. Ser. B Stat. Methodol , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 37
    • 34548536008 scopus 로고    scopus 로고
    • On the "degrees of freedom" of the lasso
    • MR2363967
    • Zou, H., Hastie, T. and Tibshirani, R. (2007). On the "degrees of freedom" of the lasso. Ann. Statist. 35 2173-2192. MR2363967
    • (2007) Ann. Statist , vol.35 , pp. 2173-2192
    • Zou, H.1    Hastie, T.2    Tibshirani, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.