메뉴 건너뛰기




Volumn 21, Issue 4, 2011, Pages 537-553

Inferring multiple graphical structures

Author keywords

Cooperative LASSO; Gaussian graphical model; Intertwined LASSO; Multiple sample setup; Network inference

Indexed keywords


EID: 80051472104     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-010-9191-2     Document Type: Article
Times cited : (73)

References (26)
  • 1
    • 77249167990 scopus 로고    scopus 로고
    • Inferring sparse Gaussian graphical models with latent structure
    • Ambroise, C., Chiquet, J., Matias, C.: Inferring sparse Gaussian graphical models with latent structure. Electron. J. Stat. 3, 205-238 (2009).
    • (2009) Electron. J. Stat. , vol.3 , pp. 205-238
    • Ambroise, C.1    Chiquet, J.2    Matias, C.3
  • 2
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. Mach. Learn. 73(3), 243-272 (2008).
    • (2008) Mach. Learn. , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 3
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
    • Banerjee, O., El Ghaoui, L., d'Aspremont, A.: Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J. Mach. Learn. Res. 9, 485-516 (2008).
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 485-516
    • Banerjee, O.1    El Ghaoui, L.2    D'Aspremont, A.3
  • 4
    • 14344277592 scopus 로고    scopus 로고
    • A model of inductive bias learning
    • Baxter, J.: A model of inductive bias learning. J. Artif. Int. Res. 12(1), 149-198 (2000).
    • (2000) J. Artif. Int. Res. , vol.12 , Issue.1 , pp. 149-198
    • Baxter, J.1
  • 6
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41-75 (1997).
    • (1997) Mach. Learn. , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 7
    • 77249179159 scopus 로고    scopus 로고
    • Weighted-lasso for structured network inference from time course data
    • Charbonnier, C., Chiquet, J., Ambroise, C.: Weighted-lasso for structured network inference from time course data. Stat. Appl. Genet. Mol. Biol. 9(1) (2010).
    • (2010) Stat. Appl. Genet. Mol. Biol , vol.9 , Issue.1
    • Charbonnier, C.1    Chiquet, J.2    Ambroise, C.3
  • 8
    • 33748991193 scopus 로고    scopus 로고
    • Cost curves: An improved method for visualizing classifier performance
    • Drummond, C., Holte, R. C.: Cost curves: An improved method for visualizing classifier performance. Mach. Learn. 65(1), 95-130 (2006).
    • (2006) Mach. Learn. , vol.65 , Issue.1 , pp. 95-130
    • Drummond, C.1    Holte, R.C.2
  • 10
    • 84887916087 scopus 로고
    • Regularized discriminant analysis
    • Friedman, J. H.: Regularized discriminant analysis. J Am. Stat. Assoc. 84(405), 165-175 (1989).
    • (1989) J Am. Stat. Assoc. , vol.84 , Issue.405 , pp. 165-175
    • Friedman, J.H.1
  • 11
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432-441 (2008).
    • (2008) Biostatistics , vol.9 , Issue.3 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 12
    • 33746126624 scopus 로고    scopus 로고
    • Blockwise sparse regression
    • Kim, Y., Kim, J., Kim, Y.: Blockwise sparse regression. Stat. Sin. 16, 375-390 (2006).
    • (2006) Stat. Sin. , vol.16 , pp. 375-390
    • Kim, Y.1    Kim, J.2    Kim, Y.3
  • 14
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selection with the lasso. Ann. Stat. 34(3), 1436-1462 (2006).
    • (2006) Ann. Stat. , vol.34 , Issue.3 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 15
    • 0142176890 scopus 로고    scopus 로고
    • Local strong homogeneity of a regularized estimator
    • Nikolova, M.: Local strong homogeneity of a regularized estimator. SIAM J. Appl. Math. 61(2), 633-658 (2000).
    • (2000) SIAM J. Appl. Math. , vol.61 , Issue.2 , pp. 633-658
    • Nikolova, M.1
  • 16
    • 0034215549 scopus 로고    scopus 로고
    • A new approach to variable selection in least squares problems
    • Osborne, M. R., Presnell, B., Turlach, B. A.: A new approach to variable selection in least squares problems. IMA J. Numer. Anal. 20(3), 389-403 (2000a).
    • (2000) IMA J. Numer. Anal. , vol.20 , Issue.3 , pp. 389-403
    • Osborne, M.R.1    Presnell, B.2    Turlach, B.A.3
  • 20
    • 56449115709 scopus 로고    scopus 로고
    • The group-lasso for generalized linear models: uniqueness of solutions and efficent algorithms
    • Roth, V., Fischer, B.: The group-lasso for generalized linear models: uniqueness of solutions and efficent algorithms. In: International Conference on Machine Learning (2008).
    • (2008) In: International Conference on Machine Learning
    • Roth, V.1    Fischer, B.2
  • 21
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D., Nolan, G.: Causal protein-signaling networks derived from multiparameter single-cell data. Science 308, 523-529 (2005).
    • (2005) Science , vol.308 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'Er, D.3    Lauffenburger, D.4    Nolan, G.5
  • 22
    • 27844521293 scopus 로고    scopus 로고
    • A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics
    • Schäfer, J., Strimmer, K.: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat. Appl. Genet. Mol. Biol. 4(1) (2005).
    • (2005) Stat. Appl. Genet. Mol. Biol , vol.4 , Issue.1
    • Schäfer, J.1    Strimmer, K.2
  • 23
    • 0036191190 scopus 로고    scopus 로고
    • Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling
    • Toh, H., Horimoto, K.: Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling. Bioinformatics 18, 287-297 (2002).
    • (2002) Bioinformatics , vol.18 , pp. 287-297
    • Toh, H.1    Horimoto, K.2
  • 24
    • 55549092053 scopus 로고    scopus 로고
    • Assessing the validity domains of graphical Gaussian models in order to infer relationships among components of complex biological systems
    • Villers, F., Schaeffer, B., Bertin, C., Huet, S.: Assessing the validity domains of graphical Gaussian models in order to infer relationships among components of complex biological systems. Stat. Appl. Genet. Mol. Biol. 7(2) (2008).
    • (2008) Stat. Appl. Genet. Mol. Biol , vol.7 , Issue.2
    • Villers, F.1    Schaeffer, B.2    Bertin, C.3    Huet, S.4
  • 25
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc., Ser. B: Stat. Methodol. 68(1), 49-67 (2006).
    • (2006) J. R. Stat. Soc., Ser. B: Stat. Methodol. , vol.68 , Issue.1 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 26
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the Gaussian graphical model
    • Yuan, M., Lin, Y.: Model selection and estimation in the Gaussian graphical model. Biometrika 94(1), 19-35 (2007).
    • (2007) Biometrika , vol.94 , Issue.1 , pp. 19-35
    • Yuan, M.1    Lin, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.