-
2
-
-
84858012279
-
Scalable inference in latent variable models
-
A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and A. J. Smola. Scalable inference in latent variable models. In WSDM, 2012.
-
(2012)
WSDM
-
-
Ahmed, A.1
Aly, M.2
Gonzalez, J.3
Narayanamurthy, S.4
Smola, A.J.5
-
3
-
-
36849072723
-
-
G. Bakir, T. Hofmann, B. Schölkopf, A. Smola, B. Taskar, and S. V. N. Vishwanathan. Predicting Structured Data. 2007.
-
(2007)
Predicting Structured Data
-
-
Bakir, G.1
Hofmann, T.2
Schölkopf, B.3
Smola, A.4
Taskar, B.5
Vishwanathan, S.V.N.6
-
4
-
-
25444522689
-
Fast kernel classifiers with online and active learning
-
September
-
A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel classifiers with online and active learning. JMLR, 6:1579-1619, September 2005.
-
(2005)
JMLR
, vol.6
, pp. 1579-1619
-
-
Bordes, A.1
Ertekin, S.2
Weston, J.3
Bottou, L.4
-
6
-
-
48849085774
-
The tradeoffs of large scale learning
-
L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In NIPS 20, 2007.
-
(2007)
NIPS 20
-
-
Bottou, L.1
Bousquet, O.2
-
7
-
-
84898936190
-
Algorithmic stability and generalization performance
-
O. Bousquet and A. Elisseeff. Algorithmic stability and generalization performance. In NIPS 12, pages 196-202, 2001.
-
(2001)
NIPS 12
, pp. 196-202
-
-
Bousquet, O.1
Elisseeff, A.2
-
9
-
-
29144439194
-
Decoding by linear programming
-
E. Candes and T. Tao. Decoding by linear programming. IEEE Trans. Information Theory, 51(12):4203-4215, 2005.
-
(2005)
IEEE Trans. Information Theory
, vol.51
, Issue.12
, pp. 4203-4215
-
-
Candes, E.1
Tao, T.2
-
11
-
-
80052677867
-
Selective block minimization for faster convergence of limited memory large-scale linear models
-
K. W. Chang and D. Roth. Selective block minimization for faster convergence of limited memory large-scale linear models. In KDD, pages 699-707, 2011.
-
(2011)
KDD
, pp. 699-707
-
-
Chang, K.W.1
Roth, D.2
-
12
-
-
85157960581
-
Implicit online learning with kernels
-
L. Cheng, S. V. N. Vishwanathan, D. Schuurmans, S. Wang, and T. Caelli. Implicit online learning with kernels. In NIPS 19, 2006.
-
(2006)
NIPS
, vol.19
-
-
Cheng, L.1
Vishwanathan, S.V.N.2
Schuurmans, D.3
Wang, S.4
Caelli, T.5
-
13
-
-
34249753618
-
Support vector networks
-
C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20(3):273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
14
-
-
33646371466
-
Online passive-aggressive algorithms
-
March
-
K. Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Y. Singer. Online passive-aggressive algorithms. JMLR, 7:551-585, March 2006.
-
(2006)
JMLR
, vol.7
, pp. 551-585
-
-
Crammer, K.1
Dekel, O.2
Keshet, J.3
Shalev-Shwartz, S.4
Singer, Y.5
-
16
-
-
73149095169
-
Message-passing algorithms for compressed sensing
-
D. L. Donoho, A. Maleki, and A. Montanari. Message-passing algorithms for compressed sensing. PNAS, 106, 2009.
-
(2009)
PNAS
, vol.106
-
-
Donoho, D.L.1
Maleki, A.2
Montanari, A.3
-
17
-
-
50949133669
-
LIBLINEAR: A library for large linear classification
-
August
-
R.-E. Fan, J.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large linear classification. JMLR, 9:1871-1874, August 2008.
-
(2008)
JMLR
, vol.9
, pp. 1871-1874
-
-
Fan, R.-E.1
Chang, J.-W.2
Hsieh, C.-J.3
Wang, X.-R.4
Lin, C.-J.5
-
18
-
-
56449086680
-
A dual coordinate descent method for large-scale linear SVM
-
C. J. Hsieh, K. W. Chang, C. J. Lin, S. S. Keerthi, and S. Sundararajan. A dual coordinate descent method for large-scale linear SVM. In ICML, pages 408-415, 2008.
-
(2008)
ICML
, pp. 408-415
-
-
Hsieh, C.J.1
Chang, K.W.2
Lin, C.J.3
Keerthi, S.S.4
Sundararajan, S.5
-
19
-
-
0002714543
-
Making large-scale SVM learning practical
-
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors
-
T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 169-184, 1999.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
20
-
-
33749563073
-
Training linear SVMs in linear time
-
T. Joachims. Training linear SVMs in linear time. In KDD, 2006.
-
(2006)
KDD
-
-
Joachims, T.1
-
21
-
-
0008815681
-
Exponentiated gradient versus gradient descent for linear predictors
-
January
-
J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors. Information and Computation, 132(1):1-64, January 1997.
-
(1997)
Information and Computation
, vol.132
, Issue.1
, pp. 1-64
-
-
Kivinen, J.1
Warmuth, M.K.2
-
22
-
-
33646032356
-
The p-norm generaliziation of the LMS algorithm for adaptive filtering
-
May
-
J. Kivinen, M. K. Warmuth, and B. Hassibi. The p-norm generaliziation of the LMS algorithm for adaptive filtering. IEEE Trans. Signal Processing, 54(5):1782-1793, May 2006.
-
(2006)
IEEE Trans. Signal Processing
, vol.54
, Issue.5
, pp. 1782-1793
-
-
Kivinen, J.1
Warmuth, M.K.2
Hassibi, B.3
-
24
-
-
0026678659
-
On the convergence of coordinate descent method for convex differentiable minimization
-
Z. Q. Luo and P. Tseng. On the convergence of coordinate descent method for convex differentiable minimization. Journal of Optimization Theory and Applications, 72(1):7-35, 1992.
-
(1992)
Journal of Optimization Theory and Applications
, vol.72
, Issue.1
, pp. 7-35
-
-
Luo, Z.Q.1
Tseng, P.2
-
25
-
-
80052652249
-
Efficient large-scale distributed training of conditional maximum entropy models
-
G. Mann, R. McDonald, M. Mohri, N. Silberman, and D. Walker. Efficient large-scale distributed training of conditional maximum entropy models. In NIPS 22, pages 1231-1239, 2009.
-
(2009)
NIPS 22
, pp. 1231-1239
-
-
Mann, G.1
McDonald, R.2
Mohri, M.3
Silberman, N.4
Walker, D.5
-
26
-
-
0028544395
-
Network information criterion - Determining the number of hidden units for artificial neural network models
-
N. Murata, S. Yoshizawa, and S. Amari. Network information criterion - determining the number of hidden units for artificial neural network models. IEEE Trans. Neural Networks, 5:865-872, 1994.
-
(1994)
IEEE Trans. Neural Networks
, vol.5
, pp. 865-872
-
-
Murata, N.1
Yoshizawa, S.2
Amari, S.3
-
27
-
-
0001562735
-
Reducing the run-time complexity in support vector regression
-
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors
-
E. Osuna and F. Girosi. Reducing the run-time complexity in support vector regression. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 271-284, 1999.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 271-284
-
-
Osuna, E.1
Girosi, F.2
-
28
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors
-
J. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 185-208, 1999.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 185-208
-
-
Platt, J.1
-
30
-
-
48849117633
-
Pegasos: Primal estimated sub-gradient solver for SVM
-
S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for SVM. In ICML, 2007.
-
(2007)
ICML
-
-
Shalev-Shwartz, S.1
Singer, Y.2
Srebro, N.3
-
31
-
-
78349276016
-
Hash kernels
-
Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola, A. Strehl, and S. V. N. Vishwanathan. Hash kernels. In AISTATS, 2009.
-
(2009)
AISTATS
-
-
Shi, Q.1
Petterson, J.2
Dror, G.3
Langford, J.4
Smola, A.5
Strehl, A.6
Vishwanathan, S.V.N.7
-
32
-
-
80052119994
-
An architecture for parallel topic models
-
A. J. Smola and S. Narayanamurthy. An architecture for parallel topic models. In VLDB, 2010.
-
(2010)
VLDB
-
-
Smola, A.J.1
Narayanamurthy, S.2
-
33
-
-
77956555214
-
COFFIN: A computational framework for linear SVMs
-
S. Sonnenburg and V. Franc. COFFIN: A computational framework for linear SVMs. In ICML, 2010.
-
(2010)
ICML
-
-
Sonnenburg, S.1
Franc, V.2
-
35
-
-
76749161402
-
Bundle methods for regularized risk minimization
-
January
-
C. H. Teo, S. V. N. Vishwanthan, A. J. Smola, and Q. V. Le. Bundle methods for regularized risk minimization. JMLR, 11:311-365, January 2010.
-
(2010)
JMLR
, vol.11
, pp. 311-365
-
-
Teo, C.H.1
Vishwanthan, S.V.N.2
Smola, A.J.3
Le, Q.V.4
-
37
-
-
71149087699
-
Feature hashing for large scale multitask learning
-
K. Weinberger, A. Dasgupta, J. Attenberg, J. Langford, and A. J. Smola. Feature hashing for large scale multitask learning. In ICML, 2009.
-
(2009)
ICML
-
-
Weinberger, K.1
Dasgupta, A.2
Attenberg, J.3
Langford, J.4
Smola, A.J.5
-
38
-
-
77956195198
-
Large linear classification when data cannot fit in memory
-
H. F. Yu, C. J. Hsieh, K. W. Chang, and C. J. Lin. Large linear classification when data cannot fit in memory. In KDD, pages 833-842, 2010.
-
(2010)
KDD
, pp. 833-842
-
-
Yu, H.F.1
Hsieh, C.J.2
Chang, K.W.3
Lin, C.J.4
-
39
-
-
33745784205
-
Parallel software for training large scale support vector machines on multiprocessor systems
-
July
-
L. Zanni, T. Serafini, and G. Zanghirati. Parallel software for training large scale support vector machines on multiprocessor systems. JMLR, 7:1467-1492, July 2006.
-
(2006)
JMLR
, vol.7
, pp. 1467-1492
-
-
Zanni, L.1
Serafini, T.2
Zanghirati, G.3
-
40
-
-
85161967549
-
Parallelized stochastic gradient descent
-
M. Zinkevich, A. Smola, M. Weimer, and L. Li. Parallelized stochastic gradient descent. In NIPS 23, pages 2595-2603, 2010.
-
(2010)
NIPS 23
, pp. 2595-2603
-
-
Zinkevich, M.1
Smola, A.2
Weimer, M.3
Li, L.4
|