메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1348-1356

Integrating meta-path selection with user-guided object clustering in heterogeneous information networks

Author keywords

heterogeneous information networks; meta path selection; user guided clustering

Indexed keywords

CLUSTERING QUALITY; CLUSTERING RESULTS; HETEROGENEOUS INFORMATION; ITERATIVE ALGORITHM; META-PATH SELECTION; OBJECT CLUSTERING; PROBABILISTIC APPROACHES; REAL NETWORKS; USER GUIDED CLUSTERING;

EID: 84866039277     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2339530.2339738     Document Type: Conference Paper
Times cited : (183)

References (31)
  • 3
    • 21844457672 scopus 로고    scopus 로고
    • Learning a mahalanobis metric from equivalence constraints
    • A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall. Learning a mahalanobis metric from equivalence constraints. JMLR, 6, 2005.
    • (2005) JMLR , vol.6
    • Bar-Hillel, A.1    Hertz, T.2    Shental, N.3    Weinshall, D.4
  • 4
  • 5
    • 12244300524 scopus 로고    scopus 로고
    • A probabilistic framework for semi-supervised clustering
    • S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic framework for semi-supervised clustering. KDD '04, pages 59-68, 2004.
    • (2004) KDD '04 , pp. 59-68
    • Basu, S.1    Bilenko, M.2    Mooney, R.J.3
  • 6
    • 14344264451 scopus 로고    scopus 로고
    • Integrating constraints and metric learning in semi-supervised clustering
    • M. Bilenko, S. Basu, and R. J. Mooney. Integrating constraints and metric learning in semi-supervised clustering. In ICML '04, 2004.
    • (2004) ICML '04
    • Bilenko, M.1    Basu, S.2    Mooney, R.J.3
  • 7
    • 0038589432 scopus 로고    scopus 로고
    • Learning to probabilistically identify authoritative documents
    • D. Cohn and H. Chang. Learning to probabilistically identify authoritative documents. In ICML '00, pages 167-174, 2000.
    • (2000) ICML '00 , pp. 167-174
    • Cohn, D.1    Chang, H.2
  • 8
    • 2942723846 scopus 로고    scopus 로고
    • A divisive information-theoretic feature clustering algorithm for text classification
    • I. S. Dhillon, S. Mallela, and R. Kumar. A divisive information-theoretic feature clustering algorithm for text classification. JMLR, 3:1265-1287, 2003.
    • (2003) JMLR , vol.3 , pp. 1265-1287
    • Dhillon, I.S.1    Mallela, S.2    Kumar, R.3
  • 9
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Mar.
    • I. Guyon and A. Elisseeff. An introduction to variable and feature selection. J. Mach. Learn. Res., 3:1157-1182, Mar. 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 10
    • 85026972772 scopus 로고    scopus 로고
    • Probabilistic latent semantic indexing
    • T. Hofmann. Probabilistic latent semantic indexing. SIGIR '99, pages 50-57, 1999.
    • (1999) SIGIR '99 , pp. 50-57
    • Hofmann, T.1
  • 11
    • 31844447616 scopus 로고    scopus 로고
    • Semi-supervised graph clustering: A kernel approach
    • B. Kulis, S. Basu, I. Dhillon, and R. Mooney. Semi-supervised graph clustering: a kernel approach. ICML '05, pages 457-464, 2005.
    • (2005) ICML '05 , pp. 457-464
    • Kulis, B.1    Basu, S.2    Dhillon, I.3    Mooney, R.4
  • 12
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In NIPS '00, pages 556-562, 2000.
    • (2000) NIPS '00 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 13
    • 34250765347 scopus 로고    scopus 로고
    • Spectral clustering for multi-type relational data
    • B. Long, Z. (mark Zhang, X. Wu, and P. S. Yu. Spectral clustering for multi-type relational data. In ICML '06, pages 585-592, 2006.
    • (2006) ICML '06 , pp. 585-592
    • Long Z, B.1    Zhang, M.2    Wu, X.3    Yu, P.S.4
  • 14
    • 36849020504 scopus 로고    scopus 로고
    • A probabilistic framework for relational clustering
    • B. Long, Z. M. Zhang, and P. S. Yu. A probabilistic framework for relational clustering. In KDD '07, pages 470-479, 2007.
    • (2007) KDD '07 , pp. 470-479
    • Long, B.1    Zhang, Z.M.2    Yu, P.S.3
  • 15
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • December
    • U. Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17:395-416, December 2007.
    • (2007) Statistics and Computing , vol.17 , pp. 395-416
    • Luxburg, U.1
  • 18
    • 49749128817 scopus 로고    scopus 로고
    • Consensus-based ensembles of soft clusterings
    • August
    • K. Punera and J. Ghosh. Consensus-based ensembles of soft clusterings. Appl. Artif. Intell., 22:780-810, August 2008.
    • (2008) Appl. Artif. Intell. , vol.22 , pp. 780-810
    • Punera, K.1    Ghosh, J.2
  • 20
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - A knowledge reuse framework for combining multiple partitions
    • A. Strehl, J. Ghosh, and C. Cardie. Cluster ensembles - a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 3:583-617, 2002.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2    Cardie, C.3
  • 21
    • 83255185987 scopus 로고    scopus 로고
    • Pathsim: Meta path-based top-k similarity search in heterogeneous information networks
    • Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu. Pathsim: Meta path-based top-k similarity search in heterogeneous information networks. In VLDB '11, 2011.
    • (2011) VLDB '11
    • Sun, Y.1    Han, J.2    Yan, X.3    Yu, P.S.4    Wu, T.5
  • 22
    • 70349121194 scopus 로고    scopus 로고
    • Rankclus: Integrating clustering with ranking for heterogeneous information network analysis
    • Y. Sun, J. Han, P. Zhao, Z. Yin, H. Cheng, and T. Wu. Rankclus: integrating clustering with ranking for heterogeneous information network analysis. In EDBT '09, pages 565-576, 2009.
    • (2009) EDBT '09 , pp. 565-576
    • Sun, Y.1    Han, J.2    Zhao, P.3    Yin, Z.4    Cheng, H.5    Wu, T.6
  • 23
    • 70350625449 scopus 로고    scopus 로고
    • Ranking-based clustering of heterogeneous information networks with star network schema
    • Y. Sun, Y. Yu, and J. Han. Ranking-based clustering of heterogeneous information networks with star network schema. In KDD '09, pages 797-806, 2009.
    • (2009) KDD '09 , pp. 797-806
    • Sun, Y.1    Yu, Y.2    Han, J.3
  • 26
    • 36949010345 scopus 로고    scopus 로고
    • Scan: A structural clustering algorithm for networks
    • X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger. Scan: a structural clustering algorithm for networks. In KDD '07, pages 824-833, 2007.
    • (2007) KDD '07 , pp. 824-833
    • Xu, X.1    Yuruk, N.2    Feng, Z.3    Schweiger, T.A.J.4
  • 27
    • 77954565155 scopus 로고    scopus 로고
    • Discriminative semi-supervised feature selection via manifold regularization
    • July
    • Z. Xu, I. King, M. R.-T. Lyu, and R. Jin. Discriminative semi-supervised feature selection via manifold regularization. Trans. Neur. Netw., 21:1033-1047, July 2010.
    • (2010) Trans. Neur. Netw. , vol.21 , pp. 1033-1047
    • Xu, Z.1    King, I.2    Lyu, M.R.-T.3    Jin, R.4
  • 29
    • 34547989065 scopus 로고    scopus 로고
    • Semi-supervised feature selection via spectral analysis
    • Z. Zhao and H. Liu. Semi-supervised feature selection via spectral analysis. In ICDM '07, 2007.
    • (2007) ICDM '07
    • Zhao, Z.1    Liu, H.2
  • 31
    • 1942484430 scopus 로고    scopus 로고
    • Semi-Supervised learning using gaussian fields and harmonic functions
    • X. Zhu, Z. Ghahramani, and J. D. Lafferty. Semi-Supervised learning using gaussian fields and harmonic functions. In ICML '03, pages 912-919, 2003.
    • (2003) ICML '03 , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.