메뉴 건너뛰기




Volumn , Issue , 2008, Pages 445-457

CSV: Visualizing and mining cohesive subgraphs

Author keywords

Clique; Data mining; Graph density; Graph mining; Visualization

Indexed keywords

APPLICATION DOMAINS; APPROXIMATE ALGORITHMS; BIOLOGICAL NETWORKS; CLIQUE; COMPONENT DISTRIBUTIONS; DENSE REGIONS; EXHAUSTIVE ENUMERATIONS; EXPONENTIAL COMPLEXITIES; EXPONENTIAL TIME COMPLEXITIES; GRAPH DENSITY; GRAPH MINING; HIGHLY SENSITIVES; LARGE GRAPHS; MAPPING STRATEGIES; MULTI-DIMENSIONAL; NEW ALGORITHMS; PARAMETER MAPPINGS; PARAMETER SETTINGS; PATTERN MININGS; PROBLEM BASED; REAL DATA SETS; SCALE-UP; SOCIAL NETWORK ANALYSES; STOCK MARKET ANALYSES; SUB COMPONENTS; SUBGRAPH; SUBGRAPH MININGS; SUBGRAPHS; UNDERLYING DISTRIBUTIONS; VISUAL GRAPHS;

EID: 57149125154     PISSN: 07308078     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1376616.1376663     Document Type: Conference Paper
Times cited : (47)

References (37)
  • 1
    • 84937390683 scopus 로고    scopus 로고
    • Massive quasi-clique detection
    • J. Abello, M. G. C. Resende, and S. Sudarsky. Massive quasi-clique detection. In LATIN, pages 598-612. 2002.
    • (2002) LATIN , pp. 598-612
    • Abello, J.1    Resende, M.G.C.2    Sudarsky, S.3
  • 2
    • 57149145266 scopus 로고    scopus 로고
    • R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In J. B. Bocca, M. Jarke, and C. Zaniolo, editors, Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pages 487-99. Morgan Kaufmann, 12-15 1994.
    • R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In J. B. Bocca, M. Jarke, and C. Zaniolo, editors, Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pages 487-99. Morgan Kaufmann, 12-15 1994.
  • 4
    • 0037057374 scopus 로고    scopus 로고
    • Exploring the conditional coregulation of yeast gene expression through fuzzy k-mean clustering
    • RESEARCH0059
    • A.P.Gasch and M.B.Eisen. Exploring the conditional coregulation of yeast gene expression through fuzzy k-mean clustering. Genome Biol., 3(RESEARCH0059), 2002.
    • (2002) Genome Biol , vol.3
    • Gasch, A.P.1    Eisen, M.B.2
  • 7
    • 33644685387 scopus 로고    scopus 로고
    • Mining market data: A network approach
    • V. Boginski, S. Butenko, and P. M. Pardalos. Mining market data: a network approach. Comput. Open Res., 33(11):3171-3184, 2006.
    • (2006) Comput. Open Res , vol.33 , Issue.11 , pp. 3171-3184
    • Boginski, V.1    Butenko, S.2    Pardalos, P.M.3
  • 10
    • 0041339760 scopus 로고    scopus 로고
    • Pivot selection techniques for proximity searching in metric spaces
    • B. Bustos, G. Navarro, and E. Chavez. Pivot selection techniques for proximity searching in metric spaces. Pattern Recogn. Lett., 24(14):2357-2366, 2003.
    • (2003) Pattern Recogn. Lett , vol.24 , Issue.14 , pp. 2357-2366
    • Bustos, B.1    Navarro, G.2    Chavez, E.3
  • 12
    • 19544367586 scopus 로고    scopus 로고
    • G. Cong, K. Tan, A. Tung, and F. Pan. Mining Frequent Closed Patterns in Microarray Data. Proceedings of the Fourth IEEE International Conference on Data Mining (ICDM '04)- 00, pages 363-366, 2004.
    • G. Cong, K. Tan, A. Tung, and F. Pan. Mining Frequent Closed Patterns in Microarray Data. Proceedings of the Fourth IEEE International Conference on Data Mining (ICDM '04)- Volume 00, pages 363-366, 2004.
  • 13
    • 29844457781 scopus 로고    scopus 로고
    • G. Cong, K. Tan, A. Tung, and X. Xu. Mining top-K covering rule groups for gene expression data. Proceedings of the 2005 ACM SIGMOD international conference on Management of data, pages 670-681, 2005.
    • G. Cong, K. Tan, A. Tung, and X. Xu. Mining top-K covering rule groups for gene expression data. Proceedings of the 2005 ACM SIGMOD international conference on Management of data, pages 670-681, 2005.
  • 15
    • 57149123362 scopus 로고    scopus 로고
    • M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases. In Proc. 1996 Int. Conf. Knowledge Discovery and Data Mining (KDD'96), pages 226-231, Portland, Oregon, Aug. 1996.
    • M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases. In Proc. 1996 Int. Conf. Knowledge Discovery and Data Mining (KDD'96), pages 226-231, Portland, Oregon, Aug. 1996.
  • 16
    • 84976803260 scopus 로고
    • FastMap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets
    • San Jose, CA, May
    • C. Faloutsos and K.-I. Lin. FastMap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets. In Proc. 1995 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD'95), pages 163-174, San Jose, CA, May 1995.
    • (1995) Proc. 1995 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD'95) , pp. 163-174
    • Faloutsos, C.1    Lin, K.-I.2
  • 17
    • 29144474447 scopus 로고    scopus 로고
    • Mining coherent dense subgraphs across massive biological networks for functional discovery
    • H.Hu, X.Yan, Y.Huang, J.Han, and X.J.Zhou. Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics, 21(1):213-221, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.1 , pp. 213-221
    • Hu, H.1    Yan, X.2    Huang, Y.3    Han, J.4    Zhou, X.J.5
  • 19
    • 57149138384 scopus 로고    scopus 로고
    • V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword search in relational databases. In VLDB,2002.
    • V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword search in relational databases. In VLDB,2002.
  • 21
    • 0037364958 scopus 로고    scopus 로고
    • Complete mining of frequent patterns from graphs: Mining graph data
    • A. Inokuchi, T. Washio, and H. Motoda. Complete mining of frequent patterns from graphs: Mining graph data. Mach. Learn., 50(3):321-354, 2003.
    • (2003) Mach. Learn , vol.50 , Issue.3 , pp. 321-354
    • Inokuchi, A.1    Washio, T.2    Motoda, H.3
  • 23
    • 30344443646 scopus 로고    scopus 로고
    • Empirical analysis of an evolving social network
    • G. Kossinets and D. Watts. Empirical analysis of an evolving social network. Science Magazine, 311 (5757), 2006.
    • (2006) Science Magazine , vol.311 , Issue.5757
    • Kossinets, G.1    Watts, D.2
  • 24
    • 78149312583 scopus 로고    scopus 로고
    • Frequent subgraph discovery
    • M. Kuramochi and G. Karypis. Frequent subgraph discovery. In ICDM, pages 313-320, 2001.
    • (2001) ICDM , pp. 313-320
    • Kuramochi, M.1    Karypis, G.2
  • 28
    • 0034998378 scopus 로고    scopus 로고
    • C. T. J. R. S. Filho, A. Traina and C. Faloutsos. Similarity search without tears: The omni family of all-purpose access methods. In Proc. of the 17th IEEE Intl. Conf. on Data Engineering, 2001.
    • C. T. J. R. S. Filho, A. Traina and C. Faloutsos. Similarity search without tears: The omni family of all-purpose access methods. In Proc. of the 17th IEEE Intl. Conf. on Data Engineering, 2001.
  • 29
    • 0000488788 scopus 로고
    • Network structure and minimum degree
    • S. Seidman. Network structure and minimum degree. Social Networks, 5:269-287, 1983.
    • (1983) Social Networks , vol.5 , pp. 269-287
    • Seidman, S.1
  • 31
    • 57149122514 scopus 로고    scopus 로고
    • Gripp - indexing and querying graphs based on pre- and postorder numbering
    • Technical report
    • S. Tri and U. Leser. Gripp - indexing and querying graphs based on pre- and postorder numbering. Technical report, 2006.
    • (2006)
    • Tri, S.1    Leser, U.2
  • 32
    • 0001263144 scopus 로고
    • On an extremal problem in graph theory
    • P. Turan. On an extremal problem in graph theory. Mat. Fiz. Lapok, 48:436-452, 1941.
    • (1941) Mat. Fiz. Lapok , vol.48 , pp. 436-452
    • Turan, P.1
  • 34
    • 57149128966 scopus 로고    scopus 로고
    • X. Yan and J. Han. gspan: Graph-based substructure pattern mining, 2002.
    • X. Yan and J. Han. gspan: Graph-based substructure pattern mining, 2002.
  • 35
    • 32344434822 scopus 로고    scopus 로고
    • Mining closed relational graphs with connectivity constraints
    • X. Yan, X. J. Zhou, and J. Han. Mining closed relational graphs with connectivity constraints. In KDD, pages 324-333, 2005.
    • (2005) KDD , pp. 324-333
    • Yan, X.1    Zhou, X.J.2    Han, J.3
  • 36
    • 2942609149 scopus 로고    scopus 로고
    • Visant: An online visualization and analysis tool for biological interaction data
    • J. W. J. Z., Mellor and C. DeLisi. Visant: an online visualization and analysis tool for biological interaction data. In BMC Bioinformatics, 5:17-24, 2004.
    • (2004) In BMC Bioinformatics , vol.5 , pp. 17-24
    • Mellor, J.W.J.Z.1    DeLisi, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.