메뉴 건너뛰기




Volumn , Issue , 2010, Pages 909-917

Mixture models for learning low-dimensional roles in high-dimensional data

Author keywords

High dimensional data; MCMC; Mixture models

Indexed keywords

ACTION MOVIES; ARCHIVED DATA; BAYESIAN FRAMEWORKS; DATA POINTS; HIGH DIMENSIONAL DATA; MCMC; MIXTURE MODEL; MIXTURE MODELS; NEWS ARTICLES; RETAIL CUSTOMERS;

EID: 77956208062     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1835804.1835919     Document Type: Conference Paper
Times cited : (6)

References (22)
  • 1
    • 0347718066 scopus 로고    scopus 로고
    • Fast algorithms for projected clustering
    • New York, NY, USA ACM Press
    • C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and J. S. Park. Fast algorithms for projected clustering. In SIGMOD, pages 61-72, New York, NY, USA, 1999. ACM Press.
    • (1999) SIGMOD , pp. 61-72
    • Aggarwal, C.C.1    Wolf, J.L.2    Yu, P.S.3    Procopiuc, C.4    Park, J.S.5
  • 2
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • New York, NY, USA ACM Press
    • R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In SIGMOD, pages 94-105, New York, NY, USA, 1998. ACM Press.
    • (1998) SIGMOD , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 5
    • 0034592783 scopus 로고    scopus 로고
    • A general probabilistic framework for clustering individuals and objects
    • I. Cadez, S. Gaffney, and P. Smyth. A general probabilistic framework for clustering individuals and objects. In KDD, pages 140-149, 2000.
    • (2000) KDD , pp. 140-149
    • Cadez, I.1    Gaffney, S.2    Smyth, P.3
  • 6
    • 0035789293 scopus 로고    scopus 로고
    • Probabilistic modeling of transaction data with applications to profiling, visualization, and prediction
    • I. Cadez, P. Smyth, and H. Mannila. Probabilistic modeling of transaction data with applications to profiling, visualization, and prediction. In KDD, pages 37-46, 2001.
    • (2001) KDD , pp. 37-46
    • Cadez, I.1    Smyth, P.2    Mannila, H.3
  • 8
    • 84864043341 scopus 로고    scopus 로고
    • Infinite latent feature models and the Indian buffet process
    • Y. Weiss, B. Schölkopf, and J. Platt, editors MIT Press, Cambridge, MA
    • T. Griffiths and Z. Ghahramani. Infinite latent feature models and the indian buffet process. In Y. Weiss, B. Schölkopf, and J. Platt, editors, NIPS 18, pages 475-482. MIT Press, Cambridge, MA, 2006.
    • (2006) NIPS , vol.18 , pp. 475-482
    • Griffiths, T.1    Ghahramani, Z.2
  • 9
    • 56449125362 scopus 로고    scopus 로고
    • A nonparametric Bayesian approach to modeling overlapping clusters
    • The Society for Artificial Intelligence and Statistics
    • K. Heller and Z. Ghahramani. A nonparametric bayesian approach to modeling overlapping clusters. In AISATS. The Society for Artificial Intelligence and Statistics, 2007.
    • (2007) AISATS
    • Heller, K.1    Ghahramani, Z.2
  • 10
    • 56449104478 scopus 로고    scopus 로고
    • Statistical models for partial membership
    • K. A. Heller, S. Williamson, and Z. Ghahramani. Statistical models for partial membership. In ICML, pages 392-399, 2008.
    • (2008) ICML , pp. 392-399
    • Heller, K.A.1    Williamson, S.2    Ghahramani, Z.3
  • 12
    • 79951870792 scopus 로고
    • The collapsed gibbs sampler in Bayesian computations with applications to a gene regulation problem
    • J. S. Liu. The collapsed gibbs sampler in bayesian computations with applications to a gene regulation problem. Journal of the American Statistical Association, 89(427):958-966, 1994.
    • (1994) Journal of the American Statistical Association , vol.89 , Issue.427 , pp. 958-966
    • Liu, J.S.1
  • 13
    • 0001789822 scopus 로고
    • Covariance structure of the gibbs sampler with applications to the comparisons of estimators and augmentation schemes
    • J. S. Liu, W. H. Wong, and A. Kong. Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes. Biometrika, 81(1):27-40, 1994.
    • (1994) Biometrika , vol.81 , Issue.1 , pp. 27-40
    • Liu, J.S.1    Wong, W.H.2    Kong, A.3
  • 16
    • 0039400863 scopus 로고
    • Various techniques used in connection with random digits
    • J. V. Neumann. Various techniques used in connection with random digits. Applied Math Series, 1951.
    • (1951) Applied Math Series
    • Neumann, J.V.1
  • 18
    • 0000759236 scopus 로고
    • How many iterations in the gibbs sampler?
    • Oxford University Press
    • A. E. Raftery and S. Lewis. How many iterations in the gibbs sampler? In Bayesian Statistics, volume 4, pages 763-773. Oxford University Press, 1992.
    • (1992) Bayesian Statistics , vol.4 , pp. 763-773
    • Raftery, A.E.1    Lewis, S.2
  • 19
    • 77956200333 scopus 로고    scopus 로고
    • Reuters news and video archive. http://www.reuters.com/resources/archive/ us/index.html.
  • 21
    • 39149109249 scopus 로고    scopus 로고
    • Learning correlations using the mixture-of-subsets model
    • M. Somaiya, C. Jermaine, and S. Ranka. Learning correlations using the mixture-of-subsets model. ACM Trans. Knowl. Discov. Data, 1(4):1-42, 2008.
    • (2008) ACM Trans. Knowl. Discov. Data , vol.1 , Issue.4 , pp. 1-42
    • Somaiya, M.1    Jermaine, C.2    Ranka, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.