메뉴 건너뛰기




Volumn 59, Issue , 2012, Pages 11-19

Oxidative stress-induced autophagy in plants: The role of mitochondria

Author keywords

Autophagic proteins; Autophagy; Cell death; Damaged organelles; Mitochondria; Mitophagy; Oxidized proteins

Indexed keywords

REACTIVE OXYGEN METABOLITE;

EID: 84865976809     PISSN: 09819428     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.plaphy.2012.02.013     Document Type: Article
Times cited : (104)

References (91)
  • 1
    • 35448981935 scopus 로고    scopus 로고
    • Autophagy: from phenomenology to molecular understanding in less than a decade
    • Klionsky D.J. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol. 2007, 8:931-937.
    • (2007) Nat. Rev. Mol. Cell Biol. , vol.8 , pp. 931-937
    • Klionsky, D.J.1
  • 2
    • 36249025723 scopus 로고    scopus 로고
    • Autophagy: process and function
    • Mizushima N. Autophagy: process and function. Genes Dev. 2007, 21:2861-2873.
    • (2007) Genes Dev. , vol.21 , pp. 2861-2873
    • Mizushima, N.1
  • 3
    • 35648962331 scopus 로고    scopus 로고
    • Plant autophagy - more than a starvation response
    • Bassham D.C. Plant autophagy - more than a starvation response. Curr. Opin. Plant Biol. 2007, 10:587-593.
    • (2007) Curr. Opin. Plant Biol. , vol.10 , pp. 587-593
    • Bassham, D.C.1
  • 4
    • 33845693003 scopus 로고    scopus 로고
    • AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells
    • Inoue Y., Suzuki T., Hattori M., Yoshimoto K., Ohsumi Y., Moriyasu Y. AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells. Plant Cell Physiol. 2006, 47:1641-1652.
    • (2006) Plant Cell Physiol. , vol.47 , pp. 1641-1652
    • Inoue, Y.1    Suzuki, T.2    Hattori, M.3    Yoshimoto, K.4    Ohsumi, Y.5    Moriyasu, Y.6
  • 7
    • 0029798980 scopus 로고    scopus 로고
    • Autophagy in tobacco suspension-cultured cells in response to sucrose starvation
    • Moriyasu Y., Ohsumi Y. Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol. 1996, 111:1233-1241.
    • (1996) Plant Physiol. , vol.111 , pp. 1233-1241
    • Moriyasu, Y.1    Ohsumi, Y.2
  • 8
    • 77956455088 scopus 로고    scopus 로고
    • Oxidative stress and autophagy in cardiac disease, neurological disorders, aging and cancer
    • Essick E.E., Sam F. Oxidative stress and autophagy in cardiac disease, neurological disorders, aging and cancer. Oxid. Med. Cell. Longev. 2010, 3:168-177.
    • (2010) Oxid. Med. Cell. Longev. , vol.3 , pp. 168-177
    • Essick, E.E.1    Sam, F.2
  • 9
    • 4544385218 scopus 로고    scopus 로고
    • Autophagy: many paths to the same end
    • Cuervo A.M. Autophagy: many paths to the same end. Mol. Cell. Biochem. 2004, 263:55-72.
    • (2004) Mol. Cell. Biochem. , vol.263 , pp. 55-72
    • Cuervo, A.M.1
  • 10
    • 75749122303 scopus 로고    scopus 로고
    • Methods in mammalian autophagy research
    • Mizushima N., Yoshimori T., Levine B. Methods in mammalian autophagy research. Cell 2010, 140:313-326.
    • (2010) Cell , vol.140 , pp. 313-326
    • Mizushima, N.1    Yoshimori, T.2    Levine, B.3
  • 11
    • 79951802995 scopus 로고    scopus 로고
    • Integrative systems biology and networks in autophagy
    • Ng A.C. Integrative systems biology and networks in autophagy. Semin. Immunopathol. 2010, 32:355-361.
    • (2010) Semin. Immunopathol. , vol.32 , pp. 355-361
    • Ng, A.C.1
  • 13
    • 53549113031 scopus 로고    scopus 로고
    • The role of TOR in autophagy regulation from yeast to plants and mammals
    • Díaz-Troya S., Pérez-Pérez M.E., Florencio F.J., Crespo J.L. The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy 2008, 4:851-865.
    • (2008) Autophagy , vol.4 , pp. 851-865
    • Díaz-Troya, S.1    Pérez-Pérez, M.E.2    Florencio, F.J.3    Crespo, J.L.4
  • 14
    • 69349103147 scopus 로고    scopus 로고
    • Function and regulation of macroautophagy in plants
    • Bassham D.C. Function and regulation of macroautophagy in plants. Biochim. Biophys. Acta 2009, 1793:1397-1403.
    • (2009) Biochim. Biophys. Acta , vol.1793 , pp. 1397-1403
    • Bassham, D.C.1
  • 15
    • 84858341692 scopus 로고    scopus 로고
    • Variations on a theme: plant autophagy in comparison to yeast and mammals
    • Avin-Wittenberg T., Honig A., Galili G. Variations on a theme: plant autophagy in comparison to yeast and mammals. Protoplasma 2011, 10.1007/s00709-011-0296-z.
    • (2011) Protoplasma
    • Avin-Wittenberg, T.1    Honig, A.2    Galili, G.3
  • 18
    • 77950994646 scopus 로고    scopus 로고
    • Autophagy: cellular and molecular mechanisms
    • Glick D., Barth S., Macleod K.F. Autophagy: cellular and molecular mechanisms. J. Pathol. 2010, 221:3-12.
    • (2010) J. Pathol. , vol.221 , pp. 3-12
    • Glick, D.1    Barth, S.2    Macleod, K.F.3
  • 19
    • 0033280667 scopus 로고    scopus 로고
    • Vacuolar import of proteins and organelles from the cytoplasm
    • Klionsky D.J., Ohsumi Y. Vacuolar import of proteins and organelles from the cytoplasm. Annu. Rev. Cell Dev. Biol. 1999, 15:1-32.
    • (1999) Annu. Rev. Cell Dev. Biol. , vol.15 , pp. 1-32
    • Klionsky, D.J.1    Ohsumi, Y.2
  • 20
    • 70449686390 scopus 로고    scopus 로고
    • Autophagy and plant innate immunity: defense through degradation
    • Hayward A.P., Tsao J., Dinesh-Kumar S.P. Autophagy and plant innate immunity: defense through degradation. Semin. Cell Dev. Biol. 2009, 20:1041-1047.
    • (2009) Semin. Cell Dev. Biol. , vol.20 , pp. 1041-1047
    • Hayward, A.P.1    Tsao, J.2    Dinesh-Kumar, S.P.3
  • 21
    • 34848886914 scopus 로고    scopus 로고
    • Autophagosome formation: core machinery and adaptations
    • Xie Z., Klionsky D.J. Autophagosome formation: core machinery and adaptations. Nat. Cell Biol. 2007, 9:1102-1109.
    • (2007) Nat. Cell Biol. , vol.9 , pp. 1102-1109
    • Xie, Z.1    Klionsky, D.J.2
  • 22
    • 80053974377 scopus 로고    scopus 로고
    • See how I eat my greens - autophagy in plant cells
    • Chung T. See how I eat my greens - autophagy in plant cells. J. Plant Biol. 2011, 54:339-350.
    • (2011) J. Plant Biol. , vol.54 , pp. 339-350
    • Chung, T.1
  • 23
    • 33947383050 scopus 로고    scopus 로고
    • ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes
    • Meijer W.H., van der Klei I.J., Veenhuis M., Kiel J.A. ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes. Autophagy 2007, 3:106-116.
    • (2007) Autophagy , vol.3 , pp. 106-116
    • Meijer, W.H.1    van der Klei, I.J.2    Veenhuis, M.3    Kiel, J.A.4
  • 24
    • 33751055103 scopus 로고    scopus 로고
    • Identification and characterization of two rice autophagy associated genes, OsAtg8 and OsAtg4
    • Su W., Ma H., Liu C., Wu J., Yang J. Identification and characterization of two rice autophagy associated genes, OsAtg8 and OsAtg4. Mol. Biol. Rep. 2006, 33:273-278.
    • (2006) Mol. Biol. Rep. , vol.33 , pp. 273-278
    • Su, W.1    Ma, H.2    Liu, C.3    Wu, J.4    Yang, J.5
  • 25
    • 34247186472 scopus 로고    scopus 로고
    • Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
    • Scherz-Shouval R., Shvets E., Fass E., Shorer H., Gil L., Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2007, 26:1749-1760.
    • (2007) EMBO J. , vol.26 , pp. 1749-1760
    • Scherz-Shouval, R.1    Shvets, E.2    Fass, E.3    Shorer, H.4    Gil, L.5    Elazar, Z.6
  • 26
    • 60749136076 scopus 로고    scopus 로고
    • Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications
    • Foyer C.H., Noctor G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid. Redox Signal. 2009, 11:861-905.
    • (2009) Antioxid. Redox Signal. , vol.11 , pp. 861-905
    • Foyer, C.H.1    Noctor, G.2
  • 27
    • 0030986221 scopus 로고    scopus 로고
    • Role of the alternative oxidase in limiting superoxide production by plant mitochondria
    • Purvis A.C. Role of the alternative oxidase in limiting superoxide production by plant mitochondria. Physiol. Plant. 1997, 100:165-170.
    • (1997) Physiol. Plant. , vol.100 , pp. 165-170
    • Purvis, A.C.1
  • 28
    • 0033429334 scopus 로고    scopus 로고
    • Stable markers of oxidant damage to proteins and their application in study of human disease
    • Davies M.J., Fu S., Wang H., Dean R.T. Stable markers of oxidant damage to proteins and their application in study of human disease. Free Radic. Biol. Med. 1999, 27:1151-1161.
    • (1999) Free Radic. Biol. Med. , vol.27 , pp. 1151-1161
    • Davies, M.J.1    Fu, S.2    Wang, H.3    Dean, R.T.4
  • 29
    • 0242416188 scopus 로고    scopus 로고
    • ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin
    • Biteau B., Labarre J., Toledano M.B. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 2003, 425:980-984.
    • (2003) Nature , vol.425 , pp. 980-984
    • Biteau, B.1    Labarre, J.2    Toledano, M.B.3
  • 30
    • 77958583033 scopus 로고    scopus 로고
    • What is stress? Concepts, definitions and applications in seed science
    • Kranner I., Minibayeva F.V., Beckett R.P., Seal C.E. What is stress? Concepts, definitions and applications in seed science. New Phytol. 2010, 188:655-673.
    • (2010) New Phytol. , vol.188 , pp. 655-673
    • Kranner, I.1    Minibayeva, F.V.2    Beckett, R.P.3    Seal, C.E.4
  • 31
    • 33645930028 scopus 로고    scopus 로고
    • Protein aggregates are transported to vacuoles by a macroautophagic mechanism in nutrient-starved plant cells
    • Toyooka K., Moriyasu Y., Goto Y., Takeuchi M., Fukuda H., Matsuoka K. Protein aggregates are transported to vacuoles by a macroautophagic mechanism in nutrient-starved plant cells. Autophagy 2006, 2:96-106.
    • (2006) Autophagy , vol.2 , pp. 96-106
    • Toyooka, K.1    Moriyasu, Y.2    Goto, Y.3    Takeuchi, M.4    Fukuda, H.5    Matsuoka, K.6
  • 33
    • 78049474352 scopus 로고    scopus 로고
    • Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants
    • Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48:909-930.
    • (2010) Plant Physiol. Biochem. , vol.48 , pp. 909-930
    • Gill, S.S.1    Tuteja, N.2
  • 34
    • 78650988662 scopus 로고    scopus 로고
    • Ascorbate and glutathione: the heart of the redox hub
    • Foyer C.H., Noctor G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 2011, 155:2-18.
    • (2011) Plant Physiol. , vol.155 , pp. 2-18
    • Foyer, C.H.1    Noctor, G.2
  • 35
    • 0035371184 scopus 로고    scopus 로고
    • Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple
    • Schafer F.Q., Buettner G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 2001, 30:1191-1212.
    • (2001) Free Radic. Biol. Med. , vol.30 , pp. 1191-1212
    • Schafer, F.Q.1    Buettner, G.R.2
  • 36
    • 33745322651 scopus 로고    scopus 로고
    • Glutathione half-cell reduction potential: a universal stress marker and modulator of programmed cell death?
    • Kranner I., Birtić S., Anderson K.M., Pritchard H.W. Glutathione half-cell reduction potential: a universal stress marker and modulator of programmed cell death?. Free Radic. Biol. Med. 2006, 40:2155-2165.
    • (2006) Free Radic. Biol. Med. , vol.40 , pp. 2155-2165
    • Kranner, I.1    Birtić, S.2    Anderson, K.M.3    Pritchard, H.W.4
  • 37
    • 79959415069 scopus 로고    scopus 로고
    • Biogenesis and cargo selectivity of autophagosomes
    • Weidberg H., Shvets E., Elazar Z. Biogenesis and cargo selectivity of autophagosomes. Annu. Rev. Biochem. 2011, 80:125-156.
    • (2011) Annu. Rev. Biochem. , vol.80 , pp. 125-156
    • Weidberg, H.1    Shvets, E.2    Elazar, Z.3
  • 38
    • 84555195856 scopus 로고    scopus 로고
    • Autophagy, mitochondria and oxidative stress: cross-talk and redox signaling
    • Lee J., Giordano S., Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signaling. Biochem. J. 2012, 441:523-540.
    • (2012) Biochem. J. , vol.441 , pp. 523-540
    • Lee, J.1    Giordano, S.2    Zhang, J.3
  • 40
    • 70849127320 scopus 로고    scopus 로고
    • Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis
    • Yoshimoto K., Jikumaru Y., Kamiya Y., Kusano M., Consonni C., Panstruga R., Ohsumi Y., Shirasu K. Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 2009, 21:2914-2927.
    • (2009) Plant Cell , vol.21 , pp. 2914-2927
    • Yoshimoto, K.1    Jikumaru, Y.2    Kamiya, Y.3    Kusano, M.4    Consonni, C.5    Panstruga, R.6    Ohsumi, Y.7    Shirasu, K.8
  • 41
    • 34248593471 scopus 로고    scopus 로고
    • Disruption of autophagy results in constitutive oxidative stress in Arabidopsis
    • Xiong Y., Contento A.L., Bassham D.C. Disruption of autophagy results in constitutive oxidative stress in Arabidopsis. Autophagy 2007, 3:257-258.
    • (2007) Autophagy , vol.3 , pp. 257-258
    • Xiong, Y.1    Contento, A.L.2    Bassham, D.C.3
  • 42
    • 14744281878 scopus 로고    scopus 로고
    • Autophagic recycling: lessons from yeast help define the process in plants
    • Thompson A.R., Vierstra R.D. Autophagic recycling: lessons from yeast help define the process in plants. Curr. Opin. Plant Biol. 2005, 8:165-173.
    • (2005) Curr. Opin. Plant Biol. , vol.8 , pp. 165-173
    • Thompson, A.R.1    Vierstra, R.D.2
  • 43
    • 19444366819 scopus 로고    scopus 로고
    • AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana
    • Xiong Y., Contento A.L., Bassham D.C. AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant J. 2005, 42:535-546.
    • (2005) Plant J. , vol.42 , pp. 535-546
    • Xiong, Y.1    Contento, A.L.2    Bassham, D.C.3
  • 44
    • 60249083823 scopus 로고    scopus 로고
    • Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves
    • Wada S., Ishida H., Izumi M., Yoshimoto K., Ohsumi Y., Mae T., Makino A. Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol. 2009, 149:885-893.
    • (2009) Plant Physiol. , vol.149 , pp. 885-893
    • Wada, S.1    Ishida, H.2    Izumi, M.3    Yoshimoto, K.4    Ohsumi, Y.5    Mae, T.6    Makino, A.7
  • 45
    • 77955876036 scopus 로고    scopus 로고
    • The Arabidopsis thaliana ACBP3 regulates leaf senescence by modulating phospholipid metabolism and ATG8 stability
    • Xiao S., Chye M.L. The Arabidopsis thaliana ACBP3 regulates leaf senescence by modulating phospholipid metabolism and ATG8 stability. Autophagy 2010, 6:802-804.
    • (2010) Autophagy , vol.6 , pp. 802-804
    • Xiao, S.1    Chye, M.L.2
  • 47
    • 70349645984 scopus 로고    scopus 로고
    • Autophagy is required for tolerance of drought and salt stress in plants
    • Liu Y., Xiong Y., Bassham D.C. Autophagy is required for tolerance of drought and salt stress in plants. Autophagy 2009, 5:954-963.
    • (2009) Autophagy , vol.5 , pp. 954-963
    • Liu, Y.1    Xiong, Y.2    Bassham, D.C.3
  • 48
    • 34548421950 scopus 로고    scopus 로고
    • Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation
    • Kang C., You Y., Avery L. Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes Dev. 2007, 21:2161-2171.
    • (2007) Genes Dev. , vol.21 , pp. 2161-2171
    • Kang, C.1    You, Y.2    Avery, L.3
  • 49
    • 20344387475 scopus 로고    scopus 로고
    • Autophagy: dual roles in life and death?
    • Baehrecke E.H. Autophagy: dual roles in life and death?. Nat. Rev. Mol. Cell Biol. 2005, 6:505-510.
    • (2005) Nat. Rev. Mol. Cell Biol. , vol.6 , pp. 505-510
    • Baehrecke, E.H.1
  • 50
    • 67549142261 scopus 로고    scopus 로고
    • Life and death partners: apoptosis, autophagy and the cross-talk between them
    • Eisenberg-Lerner A., Bialik S., Simon H.-U., Kimchi A. Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ. 2009, 16:966-975.
    • (2009) Cell Death Differ. , vol.16 , pp. 966-975
    • Eisenberg-Lerner, A.1    Bialik, S.2    Simon, H.-U.3    Kimchi, A.4
  • 51
    • 77953699668 scopus 로고    scopus 로고
    • Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer
    • Dalby K.N., Tekedereli I., Lopez-Berestein G., Ozpolat B. Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy 2010, 6:322-329.
    • (2010) Autophagy , vol.6 , pp. 322-329
    • Dalby, K.N.1    Tekedereli, I.2    Lopez-Berestein, G.3    Ozpolat, B.4
  • 52
    • 33947358244 scopus 로고    scopus 로고
    • Autophagy and cell-death proteases in plants
    • Bozhkov P., Jansson C. Autophagy and cell-death proteases in plants. Autophagy 2007, 3:136-138.
    • (2007) Autophagy , vol.3 , pp. 136-138
    • Bozhkov, P.1    Jansson, C.2
  • 53
    • 33847613456 scopus 로고    scopus 로고
    • Mitochondrial redox biology and homeostasis in plants
    • Noctor G., De Paepe R., Foyer C.H. Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci. 2007, 12:126-134.
    • (2007) Trends Plant Sci. , vol.12 , pp. 126-134
    • Noctor, G.1    De Paepe, R.2    Foyer, C.H.3
  • 56
    • 19344368318 scopus 로고    scopus 로고
    • Autophagy regulates programmed cell death during the plant innate immune response
    • Liu Y., Schiff M., Czymmek K., Tallyczy Z., Levine B., Dinesh-Kumar S.P. Autophagy regulates programmed cell death during the plant innate immune response. Cell 2005, 121:567-577.
    • (2005) Cell , vol.121 , pp. 567-577
    • Liu, Y.1    Schiff, M.2    Czymmek, K.3    Tallyczy, Z.4    Levine, B.5    Dinesh-Kumar, S.P.6
  • 57
    • 38049001895 scopus 로고    scopus 로고
    • Arabidopsis ATG6 is required to limit the pathogen-associated cell death response
    • Patel S., Dinesh-Kumar S.P. Arabidopsis ATG6 is required to limit the pathogen-associated cell death response. Autophagy 2008, 4:20-27.
    • (2008) Autophagy , vol.4 , pp. 20-27
    • Patel, S.1    Dinesh-Kumar, S.P.2
  • 58
    • 75149116267 scopus 로고    scopus 로고
    • Plant autophagy puts the brakes on cell death by controlling salicylic acid signaling
    • Yoshimoto K. Plant autophagy puts the brakes on cell death by controlling salicylic acid signaling. Autophagy 2010, 6:192-193.
    • (2010) Autophagy , vol.6 , pp. 192-193
    • Yoshimoto, K.1
  • 60
    • 78649497797 scopus 로고    scopus 로고
    • From signal transduction to autophagy of plant cell organelles: lessons from yeast and mammals and plant-specific features
    • Reumann S., Voitsekhovskaja O., Lillo C. From signal transduction to autophagy of plant cell organelles: lessons from yeast and mammals and plant-specific features. Protoplasma 2010, 247:233-256.
    • (2010) Protoplasma , vol.247 , pp. 233-256
    • Reumann, S.1    Voitsekhovskaja, O.2    Lillo, C.3
  • 61
    • 0034192503 scopus 로고    scopus 로고
    • Does the plant mitochondrion integrate cellular stress and regulate programmed cell death?
    • Jones A. Does the plant mitochondrion integrate cellular stress and regulate programmed cell death?. Trends Plant Sci. 2000, 5:225-230.
    • (2000) Trends Plant Sci. , vol.5 , pp. 225-230
    • Jones, A.1
  • 62
    • 4043160619 scopus 로고    scopus 로고
    • Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.)
    • Bartoli C.G., Gomez F., Martinez D.E., Guiamet J.J. Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.). J. Exp. Bot. 2004, 55:1663-1669.
    • (2004) J. Exp. Bot. , vol.55 , pp. 1663-1669
    • Bartoli, C.G.1    Gomez, F.2    Martinez, D.E.3    Guiamet, J.J.4
  • 63
    • 27844605495 scopus 로고    scopus 로고
    • Superoxide generation from mitochondrial NADH dehydrogenase induces self-inactivation with specific protein radical formation
    • Chen Y.R., Chen C.L., Zhang L., Green-Church K.B., Zweier J.L. Superoxide generation from mitochondrial NADH dehydrogenase induces self-inactivation with specific protein radical formation. J. Biol. Chem. 2005, 280:37339-37348.
    • (2005) J. Biol. Chem. , vol.280 , pp. 37339-37348
    • Chen, Y.R.1    Chen, C.L.2    Zhang, L.3    Green-Church, K.B.4    Zweier, J.L.5
  • 64
    • 0037490142 scopus 로고    scopus 로고
    • Reversible glutathionylation of complex I increases mitochondrial superoxide formation
    • Taylor E.R., Hurrell F., Shannon R.J., Lin T.K., Hirst J., Murphy M.P. Reversible glutathionylation of complex I increases mitochondrial superoxide formation. J. Biol. Chem. 2003, 278:19603-19610.
    • (2003) J. Biol. Chem. , vol.278 , pp. 19603-19610
    • Taylor, E.R.1    Hurrell, F.2    Shannon, R.J.3    Lin, T.K.4    Hirst, J.5    Murphy, M.P.6
  • 65
    • 33845667960 scopus 로고    scopus 로고
    • Reactive oxygen species generation and antioxidant systems in plant mitochondria
    • Navrot N., Rouhier N., Gelhaye E., Jacquo J.-P. Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol. Plant. 2007, 129:185-195.
    • (2007) Physiol. Plant. , vol.129 , pp. 185-195
    • Navrot, N.1    Rouhier, N.2    Gelhaye, E.3    Jacquo, J.-P.4
  • 66
    • 0039174315 scopus 로고    scopus 로고
    • Mitochondrial aconitase is a source of hydroxyl radical. An electron spin resonance investigation
    • Vasquez-Vivar J., Kalyanaraman B., Kennedy M.C. Mitochondrial aconitase is a source of hydroxyl radical. An electron spin resonance investigation. J. Biol. Chem. 2000, 275:14064-14069.
    • (2000) J. Biol. Chem. , vol.275 , pp. 14064-14069
    • Vasquez-Vivar, J.1    Kalyanaraman, B.2    Kennedy, M.C.3
  • 67
    • 0023574890 scopus 로고
    • Electron transfer from protein to DNA in irradiated chromatin
    • Cullis P.M., Jones G.D., Symons M.C., Lea J.S. Electron transfer from protein to DNA in irradiated chromatin. Nature 1987, 330:773-774.
    • (1987) Nature , vol.330 , pp. 773-774
    • Cullis, P.M.1    Jones, G.D.2    Symons, M.C.3    Lea, J.S.4
  • 68
    • 0031032817 scopus 로고    scopus 로고
    • Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress
    • Yakes F.M., Van H.B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl. Acad. Sci. U. S. A. 1997, 94:514-519.
    • (1997) Proc. Natl. Acad. Sci. U. S. A. , vol.94 , pp. 514-519
    • Yakes, F.M.1    Van, H.B.2
  • 69
    • 3242749880 scopus 로고    scopus 로고
    • Protein oxidation in plant mitochondria as a stress indicator
    • Møller I.M., Kristensen B.K. Protein oxidation in plant mitochondria as a stress indicator. Photochem. Photobiol. Sci. 2004, 3:730-735.
    • (2004) Photochem. Photobiol. Sci. , vol.3 , pp. 730-735
    • Møller, I.M.1    Kristensen, B.K.2
  • 70
    • 3242776324 scopus 로고    scopus 로고
    • Identification of oxidised proteins in the matrix of rice leaf mitochondria by immunoprecipitation and two-dimensional liquid chromatography-tandem mass spectrometry
    • Kristensen B.K., Askerlund P., Bykova N.V., Egsgaard H., Møller I.M. Identification of oxidised proteins in the matrix of rice leaf mitochondria by immunoprecipitation and two-dimensional liquid chromatography-tandem mass spectrometry. Phytochemistry 2004, 65:1839-1851.
    • (2004) Phytochemistry , vol.65 , pp. 1839-1851
    • Kristensen, B.K.1    Askerlund, P.2    Bykova, N.V.3    Egsgaard, H.4    Møller, I.M.5
  • 72
    • 1642547067 scopus 로고    scopus 로고
    • Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco Bright-Yellow 2 cells
    • Vacca R.A., de Pinto M.C., Valenti D., Passarella S., Marra E., De Gara L. Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco Bright-Yellow 2 cells. Plant Physiol. 2004, 134:1100-1112.
    • (2004) Plant Physiol. , vol.134 , pp. 1100-1112
    • Vacca, R.A.1    de Pinto, M.C.2    Valenti, D.3    Passarella, S.4    Marra, E.5    De Gara, L.6
  • 73
    • 77952055233 scopus 로고    scopus 로고
    • Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems
    • Blokhina O., Fagerstedt K.V. Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems. Physiol. Plant. 2010, 138:447-462.
    • (2010) Physiol. Plant. , vol.138 , pp. 447-462
    • Blokhina, O.1    Fagerstedt, K.V.2
  • 74
    • 0344875538 scopus 로고    scopus 로고
    • Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants
    • Chew O., Whelan J., Millar A.H. Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J. Biol. Chem. 2003, 278:46869-46877.
    • (2003) J. Biol. Chem. , vol.278 , pp. 46869-46877
    • Chew, O.1    Whelan, J.2    Millar, A.H.3
  • 76
    • 33746589081 scopus 로고    scopus 로고
    • Alternative oxidases in Arabidopsis: a comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses
    • Clifton R., Millar A.H., Whelan J. Alternative oxidases in Arabidopsis: a comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses. Biochim. Biophys. Acta 2006, 1757:730-741.
    • (2006) Biochim. Biophys. Acta , vol.1757 , pp. 730-741
    • Clifton, R.1    Millar, A.H.2    Whelan, J.3
  • 77
    • 70450237830 scopus 로고    scopus 로고
    • Is the maintenance of homeostatic mitochondrial signaling during stress a physiological role for alternative oxidase?
    • Vanlerberghe G.C., Cvetkovska M., Wang J. Is the maintenance of homeostatic mitochondrial signaling during stress a physiological role for alternative oxidase?. Physiol. Plant. 2009, 137:392-406.
    • (2009) Physiol. Plant. , vol.137 , pp. 392-406
    • Vanlerberghe, G.C.1    Cvetkovska, M.2    Wang, J.3
  • 78
    • 70450225552 scopus 로고    scopus 로고
    • Manipulation of alternative oxidase can influence salt tolerance in Arabidopsis thaliana
    • Smith C.A., Melino V.J., Sweetman C., Soole K.L. Manipulation of alternative oxidase can influence salt tolerance in Arabidopsis thaliana. Physiol. Plant. 2009, 137:459-472.
    • (2009) Physiol. Plant. , vol.137 , pp. 459-472
    • Smith, C.A.1    Melino, V.J.2    Sweetman, C.3    Soole, K.L.4
  • 79
    • 77955665367 scopus 로고    scopus 로고
    • Redox homeostasis in plants. The challenge of living with endogenous oxygen production
    • De Gara L., Locato V., Dipierro S., de Pinto M.C. Redox homeostasis in plants. The challenge of living with endogenous oxygen production. Respir. Physiol. Neurobiol. 2010, 173:S13-S19.
    • (2010) Respir. Physiol. Neurobiol. , vol.173
    • De Gara, L.1    Locato, V.2    Dipierro, S.3    de Pinto, M.C.4
  • 80
    • 1842529224 scopus 로고    scopus 로고
    • The uncoupling protein and the potassium channel are activated by hyperosmotic stress in mitochondria from durum wheat seedlings
    • Trono D., Flagella Z., Laus M.N., Di Fonzo N., Pastore D. The uncoupling protein and the potassium channel are activated by hyperosmotic stress in mitochondria from durum wheat seedlings. Plant Cell Environ. 2004, 27:437-448.
    • (2004) Plant Cell Environ. , vol.27 , pp. 437-448
    • Trono, D.1    Flagella, Z.2    Laus, M.N.3    Di Fonzo, N.4    Pastore, D.5
  • 81
    • 16844366524 scopus 로고    scopus 로고
    • Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging
    • Lemasters J.J. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res. 2005, 8:3-5.
    • (2005) Rejuvenation Res. , vol.8 , pp. 3-5
    • Lemasters, J.J.1
  • 82
    • 76449083770 scopus 로고    scopus 로고
    • The molecular mechanism of mitochondria autophagy in yeast
    • Kanki T., Klionsky D.J. The molecular mechanism of mitochondria autophagy in yeast. Mol. Microbiol. 2010, 75:795-800.
    • (2010) Mol. Microbiol. , vol.75 , pp. 795-800
    • Kanki, T.1    Klionsky, D.J.2
  • 83
    • 71849099747 scopus 로고    scopus 로고
    • Reactive oxygen species in Phanerochaete chrysosporium: relationship between extracellular oxidative and intracellular antioxidant systems
    • Morel M., Ngadin A.A., Jacquot J.-P., Gelhaye E. Reactive oxygen species in Phanerochaete chrysosporium: relationship between extracellular oxidative and intracellular antioxidant systems. Adv. Bot. Res. 2009, 52:153-186.
    • (2009) Adv. Bot. Res. , vol.52 , pp. 153-186
    • Morel, M.1    Ngadin, A.A.2    Jacquot, J.-P.3    Gelhaye, E.4
  • 85
    • 78349275317 scopus 로고    scopus 로고
    • Mitophagy in yeast: actors and physiological roles
    • Bhatia-KiŠŠová I., Camougrand N. Mitophagy in yeast: actors and physiological roles. FEMS Yeast Res. 2010, 10:1023-1034.
    • (2010) FEMS Yeast Res. , vol.10 , pp. 1023-1034
    • Bhatia-KiŠŠová, I.1    Camougrand, N.2
  • 86
    • 69649090647 scopus 로고    scopus 로고
    • Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis
    • Betin V.M., Lane J.D. Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis. J. Cell Sci. 2009, 15:2554-2566.
    • (2009) J. Cell Sci. , vol.15 , pp. 2554-2566
    • Betin, V.M.1    Lane, J.D.2
  • 87
    • 34247172582 scopus 로고    scopus 로고
    • Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival
    • Tal R., Winter G., Ecker N., Klionsky D.J., Abeliovich H. Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival. J. Biol. Chem. 2007, 282:5617-5624.
    • (2007) J. Biol. Chem. , vol.282 , pp. 5617-5624
    • Tal, R.1    Winter, G.2    Ecker, N.3    Klionsky, D.J.4    Abeliovich, H.5
  • 88
    • 73449095225 scopus 로고    scopus 로고
    • Atg32 is a tag for mitochondria degradation in yeast
    • Kanki T., Klionsky D.J. Atg32 is a tag for mitochondria degradation in yeast. Autophagy 2009, 5:1201-1202.
    • (2009) Autophagy , vol.5 , pp. 1201-1202
    • Kanki, T.1    Klionsky, D.J.2
  • 89
    • 0344861878 scopus 로고    scopus 로고
    • Mitochondrial genomes: anything goes
    • Burger G., Gray M.W., Lang B.F. Mitochondrial genomes: anything goes. Trends Genet. 2003, 19:709-716.
    • (2003) Trends Genet. , vol.19 , pp. 709-716
    • Burger, G.1    Gray, M.W.2    Lang, B.F.3
  • 90
    • 70349649218 scopus 로고    scopus 로고
    • Atg4D at the interface between autophagy and apoptosis
    • Betin V.M., Lane J.D. Atg4D at the interface between autophagy and apoptosis. Autophagy 2009, 5:1057-1059.
    • (2009) Autophagy , vol.5 , pp. 1057-1059
    • Betin, V.M.1    Lane, J.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.