-
1
-
-
35448981935
-
Autophagy: from phenomenology to molecular understanding in less than a decade
-
Klionsky D.J. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol. 2007, 8:931-937.
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, pp. 931-937
-
-
Klionsky, D.J.1
-
2
-
-
36249025723
-
Autophagy: process and function
-
Mizushima N. Autophagy: process and function. Genes Dev. 2007, 21:2861-2873.
-
(2007)
Genes Dev.
, vol.21
, pp. 2861-2873
-
-
Mizushima, N.1
-
3
-
-
35648962331
-
Plant autophagy - more than a starvation response
-
Bassham D.C. Plant autophagy - more than a starvation response. Curr. Opin. Plant Biol. 2007, 10:587-593.
-
(2007)
Curr. Opin. Plant Biol.
, vol.10
, pp. 587-593
-
-
Bassham, D.C.1
-
4
-
-
33845693003
-
AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells
-
Inoue Y., Suzuki T., Hattori M., Yoshimoto K., Ohsumi Y., Moriyasu Y. AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells. Plant Cell Physiol. 2006, 47:1641-1652.
-
(2006)
Plant Cell Physiol.
, vol.47
, pp. 1641-1652
-
-
Inoue, Y.1
Suzuki, T.2
Hattori, M.3
Yoshimoto, K.4
Ohsumi, Y.5
Moriyasu, Y.6
-
5
-
-
33644583039
-
Autophagy in development and stress responses of plants
-
Bassham D.C., Laporte M., Marty F., Moriyasu Y., Ohsumi Y., Olsen L.J., Yoshimoto K. Autophagy in development and stress responses of plants. Autophagy 2006, 2:2-11.
-
(2006)
Autophagy
, vol.2
, pp. 2-11
-
-
Bassham, D.C.1
Laporte, M.2
Marty, F.3
Moriyasu, Y.4
Ohsumi, Y.5
Olsen, L.J.6
Yoshimoto, K.7
-
6
-
-
79959978116
-
Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens
-
Lenz H.D., Haller E., Melzer E., Kober K., Wurster K., Stahl M., Bassham D.C., Vierstra R.D., Parker J.E., Bautor J., Molina A., Escudero V., Shindo T., van der Hoorn R.A., Gust A.A., Nürnberger T. Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. Plant J. 2011, 66:818-830.
-
(2011)
Plant J.
, vol.66
, pp. 818-830
-
-
Lenz, H.D.1
Haller, E.2
Melzer, E.3
Kober, K.4
Wurster, K.5
Stahl, M.6
Bassham, D.C.7
Vierstra, R.D.8
Parker, J.E.9
Bautor, J.10
Molina, A.11
Escudero, V.12
Shindo, T.13
van der Hoorn, R.A.14
Gust, A.A.15
Nürnberger, T.16
-
7
-
-
0029798980
-
Autophagy in tobacco suspension-cultured cells in response to sucrose starvation
-
Moriyasu Y., Ohsumi Y. Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol. 1996, 111:1233-1241.
-
(1996)
Plant Physiol.
, vol.111
, pp. 1233-1241
-
-
Moriyasu, Y.1
Ohsumi, Y.2
-
8
-
-
77956455088
-
Oxidative stress and autophagy in cardiac disease, neurological disorders, aging and cancer
-
Essick E.E., Sam F. Oxidative stress and autophagy in cardiac disease, neurological disorders, aging and cancer. Oxid. Med. Cell. Longev. 2010, 3:168-177.
-
(2010)
Oxid. Med. Cell. Longev.
, vol.3
, pp. 168-177
-
-
Essick, E.E.1
Sam, F.2
-
9
-
-
4544385218
-
Autophagy: many paths to the same end
-
Cuervo A.M. Autophagy: many paths to the same end. Mol. Cell. Biochem. 2004, 263:55-72.
-
(2004)
Mol. Cell. Biochem.
, vol.263
, pp. 55-72
-
-
Cuervo, A.M.1
-
10
-
-
75749122303
-
Methods in mammalian autophagy research
-
Mizushima N., Yoshimori T., Levine B. Methods in mammalian autophagy research. Cell 2010, 140:313-326.
-
(2010)
Cell
, vol.140
, pp. 313-326
-
-
Mizushima, N.1
Yoshimori, T.2
Levine, B.3
-
11
-
-
79951802995
-
Integrative systems biology and networks in autophagy
-
Ng A.C. Integrative systems biology and networks in autophagy. Semin. Immunopathol. 2010, 32:355-361.
-
(2010)
Semin. Immunopathol.
, vol.32
, pp. 355-361
-
-
Ng, A.C.1
-
13
-
-
53549113031
-
The role of TOR in autophagy regulation from yeast to plants and mammals
-
Díaz-Troya S., Pérez-Pérez M.E., Florencio F.J., Crespo J.L. The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy 2008, 4:851-865.
-
(2008)
Autophagy
, vol.4
, pp. 851-865
-
-
Díaz-Troya, S.1
Pérez-Pérez, M.E.2
Florencio, F.J.3
Crespo, J.L.4
-
14
-
-
69349103147
-
Function and regulation of macroautophagy in plants
-
Bassham D.C. Function and regulation of macroautophagy in plants. Biochim. Biophys. Acta 2009, 1793:1397-1403.
-
(2009)
Biochim. Biophys. Acta
, vol.1793
, pp. 1397-1403
-
-
Bassham, D.C.1
-
15
-
-
84858341692
-
Variations on a theme: plant autophagy in comparison to yeast and mammals
-
Avin-Wittenberg T., Honig A., Galili G. Variations on a theme: plant autophagy in comparison to yeast and mammals. Protoplasma 2011, 10.1007/s00709-011-0296-z.
-
(2011)
Protoplasma
-
-
Avin-Wittenberg, T.1
Honig, A.2
Galili, G.3
-
17
-
-
67649467294
-
Dynamics and diversity in autophagy mechanisms: lessons from yeast
-
Nakatogawa H., Suzuki K., Kamada Y., Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell Biol. 2009, 10:458-467.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 458-467
-
-
Nakatogawa, H.1
Suzuki, K.2
Kamada, Y.3
Ohsumi, Y.4
-
18
-
-
77950994646
-
Autophagy: cellular and molecular mechanisms
-
Glick D., Barth S., Macleod K.F. Autophagy: cellular and molecular mechanisms. J. Pathol. 2010, 221:3-12.
-
(2010)
J. Pathol.
, vol.221
, pp. 3-12
-
-
Glick, D.1
Barth, S.2
Macleod, K.F.3
-
19
-
-
0033280667
-
Vacuolar import of proteins and organelles from the cytoplasm
-
Klionsky D.J., Ohsumi Y. Vacuolar import of proteins and organelles from the cytoplasm. Annu. Rev. Cell Dev. Biol. 1999, 15:1-32.
-
(1999)
Annu. Rev. Cell Dev. Biol.
, vol.15
, pp. 1-32
-
-
Klionsky, D.J.1
Ohsumi, Y.2
-
20
-
-
70449686390
-
Autophagy and plant innate immunity: defense through degradation
-
Hayward A.P., Tsao J., Dinesh-Kumar S.P. Autophagy and plant innate immunity: defense through degradation. Semin. Cell Dev. Biol. 2009, 20:1041-1047.
-
(2009)
Semin. Cell Dev. Biol.
, vol.20
, pp. 1041-1047
-
-
Hayward, A.P.1
Tsao, J.2
Dinesh-Kumar, S.P.3
-
21
-
-
34848886914
-
Autophagosome formation: core machinery and adaptations
-
Xie Z., Klionsky D.J. Autophagosome formation: core machinery and adaptations. Nat. Cell Biol. 2007, 9:1102-1109.
-
(2007)
Nat. Cell Biol.
, vol.9
, pp. 1102-1109
-
-
Xie, Z.1
Klionsky, D.J.2
-
22
-
-
80053974377
-
See how I eat my greens - autophagy in plant cells
-
Chung T. See how I eat my greens - autophagy in plant cells. J. Plant Biol. 2011, 54:339-350.
-
(2011)
J. Plant Biol.
, vol.54
, pp. 339-350
-
-
Chung, T.1
-
23
-
-
33947383050
-
ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes
-
Meijer W.H., van der Klei I.J., Veenhuis M., Kiel J.A. ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes. Autophagy 2007, 3:106-116.
-
(2007)
Autophagy
, vol.3
, pp. 106-116
-
-
Meijer, W.H.1
van der Klei, I.J.2
Veenhuis, M.3
Kiel, J.A.4
-
24
-
-
33751055103
-
Identification and characterization of two rice autophagy associated genes, OsAtg8 and OsAtg4
-
Su W., Ma H., Liu C., Wu J., Yang J. Identification and characterization of two rice autophagy associated genes, OsAtg8 and OsAtg4. Mol. Biol. Rep. 2006, 33:273-278.
-
(2006)
Mol. Biol. Rep.
, vol.33
, pp. 273-278
-
-
Su, W.1
Ma, H.2
Liu, C.3
Wu, J.4
Yang, J.5
-
25
-
-
34247186472
-
Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
-
Scherz-Shouval R., Shvets E., Fass E., Shorer H., Gil L., Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2007, 26:1749-1760.
-
(2007)
EMBO J.
, vol.26
, pp. 1749-1760
-
-
Scherz-Shouval, R.1
Shvets, E.2
Fass, E.3
Shorer, H.4
Gil, L.5
Elazar, Z.6
-
26
-
-
60749136076
-
Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications
-
Foyer C.H., Noctor G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid. Redox Signal. 2009, 11:861-905.
-
(2009)
Antioxid. Redox Signal.
, vol.11
, pp. 861-905
-
-
Foyer, C.H.1
Noctor, G.2
-
27
-
-
0030986221
-
Role of the alternative oxidase in limiting superoxide production by plant mitochondria
-
Purvis A.C. Role of the alternative oxidase in limiting superoxide production by plant mitochondria. Physiol. Plant. 1997, 100:165-170.
-
(1997)
Physiol. Plant.
, vol.100
, pp. 165-170
-
-
Purvis, A.C.1
-
28
-
-
0033429334
-
Stable markers of oxidant damage to proteins and their application in study of human disease
-
Davies M.J., Fu S., Wang H., Dean R.T. Stable markers of oxidant damage to proteins and their application in study of human disease. Free Radic. Biol. Med. 1999, 27:1151-1161.
-
(1999)
Free Radic. Biol. Med.
, vol.27
, pp. 1151-1161
-
-
Davies, M.J.1
Fu, S.2
Wang, H.3
Dean, R.T.4
-
29
-
-
0242416188
-
ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin
-
Biteau B., Labarre J., Toledano M.B. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 2003, 425:980-984.
-
(2003)
Nature
, vol.425
, pp. 980-984
-
-
Biteau, B.1
Labarre, J.2
Toledano, M.B.3
-
30
-
-
77958583033
-
What is stress? Concepts, definitions and applications in seed science
-
Kranner I., Minibayeva F.V., Beckett R.P., Seal C.E. What is stress? Concepts, definitions and applications in seed science. New Phytol. 2010, 188:655-673.
-
(2010)
New Phytol.
, vol.188
, pp. 655-673
-
-
Kranner, I.1
Minibayeva, F.V.2
Beckett, R.P.3
Seal, C.E.4
-
31
-
-
33645930028
-
Protein aggregates are transported to vacuoles by a macroautophagic mechanism in nutrient-starved plant cells
-
Toyooka K., Moriyasu Y., Goto Y., Takeuchi M., Fukuda H., Matsuoka K. Protein aggregates are transported to vacuoles by a macroautophagic mechanism in nutrient-starved plant cells. Autophagy 2006, 2:96-106.
-
(2006)
Autophagy
, vol.2
, pp. 96-106
-
-
Toyooka, K.1
Moriyasu, Y.2
Goto, Y.3
Takeuchi, M.4
Fukuda, H.5
Matsuoka, K.6
-
32
-
-
64149102105
-
Wound-induced apoplastic peroxidase activities: their roles in the production and detoxification of reactive oxygen species
-
Minibayeva F., Kolesnikov O., Chasov A., Beckett R.P., Lüthje S., Vylegzhanina N., Buck F., Böttger M. Wound-induced apoplastic peroxidase activities: their roles in the production and detoxification of reactive oxygen species. Plant Cell Environ. 2009, 32:497-508.
-
(2009)
Plant Cell Environ.
, vol.32
, pp. 497-508
-
-
Minibayeva, F.1
Kolesnikov, O.2
Chasov, A.3
Beckett, R.P.4
Lüthje, S.5
Vylegzhanina, N.6
Buck, F.7
Böttger, M.8
-
33
-
-
78049474352
-
Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants
-
Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48:909-930.
-
(2010)
Plant Physiol. Biochem.
, vol.48
, pp. 909-930
-
-
Gill, S.S.1
Tuteja, N.2
-
34
-
-
78650988662
-
Ascorbate and glutathione: the heart of the redox hub
-
Foyer C.H., Noctor G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 2011, 155:2-18.
-
(2011)
Plant Physiol.
, vol.155
, pp. 2-18
-
-
Foyer, C.H.1
Noctor, G.2
-
35
-
-
0035371184
-
Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple
-
Schafer F.Q., Buettner G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 2001, 30:1191-1212.
-
(2001)
Free Radic. Biol. Med.
, vol.30
, pp. 1191-1212
-
-
Schafer, F.Q.1
Buettner, G.R.2
-
36
-
-
33745322651
-
Glutathione half-cell reduction potential: a universal stress marker and modulator of programmed cell death?
-
Kranner I., Birtić S., Anderson K.M., Pritchard H.W. Glutathione half-cell reduction potential: a universal stress marker and modulator of programmed cell death?. Free Radic. Biol. Med. 2006, 40:2155-2165.
-
(2006)
Free Radic. Biol. Med.
, vol.40
, pp. 2155-2165
-
-
Kranner, I.1
Birtić, S.2
Anderson, K.M.3
Pritchard, H.W.4
-
37
-
-
79959415069
-
Biogenesis and cargo selectivity of autophagosomes
-
Weidberg H., Shvets E., Elazar Z. Biogenesis and cargo selectivity of autophagosomes. Annu. Rev. Biochem. 2011, 80:125-156.
-
(2011)
Annu. Rev. Biochem.
, vol.80
, pp. 125-156
-
-
Weidberg, H.1
Shvets, E.2
Elazar, Z.3
-
38
-
-
84555195856
-
Autophagy, mitochondria and oxidative stress: cross-talk and redox signaling
-
Lee J., Giordano S., Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signaling. Biochem. J. 2012, 441:523-540.
-
(2012)
Biochem. J.
, vol.441
, pp. 523-540
-
-
Lee, J.1
Giordano, S.2
Zhang, J.3
-
39
-
-
79955377420
-
Autophagy-deficient mice develop multiple liver tumors
-
Takamura A., Komatsu M., Hara T., Sakamoto A., Kishi C., Waguri S., Eishi Y., Hino O., Tanaka K., Mizushima N. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 2011, 25:795-800.
-
(2011)
Genes Dev.
, vol.25
, pp. 795-800
-
-
Takamura, A.1
Komatsu, M.2
Hara, T.3
Sakamoto, A.4
Kishi, C.5
Waguri, S.6
Eishi, Y.7
Hino, O.8
Tanaka, K.9
Mizushima, N.10
-
40
-
-
70849127320
-
Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis
-
Yoshimoto K., Jikumaru Y., Kamiya Y., Kusano M., Consonni C., Panstruga R., Ohsumi Y., Shirasu K. Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 2009, 21:2914-2927.
-
(2009)
Plant Cell
, vol.21
, pp. 2914-2927
-
-
Yoshimoto, K.1
Jikumaru, Y.2
Kamiya, Y.3
Kusano, M.4
Consonni, C.5
Panstruga, R.6
Ohsumi, Y.7
Shirasu, K.8
-
41
-
-
34248593471
-
Disruption of autophagy results in constitutive oxidative stress in Arabidopsis
-
Xiong Y., Contento A.L., Bassham D.C. Disruption of autophagy results in constitutive oxidative stress in Arabidopsis. Autophagy 2007, 3:257-258.
-
(2007)
Autophagy
, vol.3
, pp. 257-258
-
-
Xiong, Y.1
Contento, A.L.2
Bassham, D.C.3
-
42
-
-
14744281878
-
Autophagic recycling: lessons from yeast help define the process in plants
-
Thompson A.R., Vierstra R.D. Autophagic recycling: lessons from yeast help define the process in plants. Curr. Opin. Plant Biol. 2005, 8:165-173.
-
(2005)
Curr. Opin. Plant Biol.
, vol.8
, pp. 165-173
-
-
Thompson, A.R.1
Vierstra, R.D.2
-
43
-
-
19444366819
-
AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana
-
Xiong Y., Contento A.L., Bassham D.C. AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant J. 2005, 42:535-546.
-
(2005)
Plant J.
, vol.42
, pp. 535-546
-
-
Xiong, Y.1
Contento, A.L.2
Bassham, D.C.3
-
44
-
-
60249083823
-
Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves
-
Wada S., Ishida H., Izumi M., Yoshimoto K., Ohsumi Y., Mae T., Makino A. Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol. 2009, 149:885-893.
-
(2009)
Plant Physiol.
, vol.149
, pp. 885-893
-
-
Wada, S.1
Ishida, H.2
Izumi, M.3
Yoshimoto, K.4
Ohsumi, Y.5
Mae, T.6
Makino, A.7
-
45
-
-
77955876036
-
The Arabidopsis thaliana ACBP3 regulates leaf senescence by modulating phospholipid metabolism and ATG8 stability
-
Xiao S., Chye M.L. The Arabidopsis thaliana ACBP3 regulates leaf senescence by modulating phospholipid metabolism and ATG8 stability. Autophagy 2010, 6:802-804.
-
(2010)
Autophagy
, vol.6
, pp. 802-804
-
-
Xiao, S.1
Chye, M.L.2
-
46
-
-
25444483066
-
Lithium induces autophagy by inhibiting inositol monophosphatase
-
Sarkar S., Floto R.A., Berger Z., Imarisio S., Cordenier A., Pasco M., Cook L.J., Rubinsztein D.C. Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell Biol. 2005, 170:1101-1111.
-
(2005)
J. Cell Biol.
, vol.170
, pp. 1101-1111
-
-
Sarkar, S.1
Floto, R.A.2
Berger, Z.3
Imarisio, S.4
Cordenier, A.5
Pasco, M.6
Cook, L.J.7
Rubinsztein, D.C.8
-
47
-
-
70349645984
-
Autophagy is required for tolerance of drought and salt stress in plants
-
Liu Y., Xiong Y., Bassham D.C. Autophagy is required for tolerance of drought and salt stress in plants. Autophagy 2009, 5:954-963.
-
(2009)
Autophagy
, vol.5
, pp. 954-963
-
-
Liu, Y.1
Xiong, Y.2
Bassham, D.C.3
-
48
-
-
34548421950
-
Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation
-
Kang C., You Y., Avery L. Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes Dev. 2007, 21:2161-2171.
-
(2007)
Genes Dev.
, vol.21
, pp. 2161-2171
-
-
Kang, C.1
You, Y.2
Avery, L.3
-
49
-
-
20344387475
-
Autophagy: dual roles in life and death?
-
Baehrecke E.H. Autophagy: dual roles in life and death?. Nat. Rev. Mol. Cell Biol. 2005, 6:505-510.
-
(2005)
Nat. Rev. Mol. Cell Biol.
, vol.6
, pp. 505-510
-
-
Baehrecke, E.H.1
-
50
-
-
67549142261
-
Life and death partners: apoptosis, autophagy and the cross-talk between them
-
Eisenberg-Lerner A., Bialik S., Simon H.-U., Kimchi A. Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ. 2009, 16:966-975.
-
(2009)
Cell Death Differ.
, vol.16
, pp. 966-975
-
-
Eisenberg-Lerner, A.1
Bialik, S.2
Simon, H.-U.3
Kimchi, A.4
-
51
-
-
77953699668
-
Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer
-
Dalby K.N., Tekedereli I., Lopez-Berestein G., Ozpolat B. Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy 2010, 6:322-329.
-
(2010)
Autophagy
, vol.6
, pp. 322-329
-
-
Dalby, K.N.1
Tekedereli, I.2
Lopez-Berestein, G.3
Ozpolat, B.4
-
52
-
-
33947358244
-
Autophagy and cell-death proteases in plants
-
Bozhkov P., Jansson C. Autophagy and cell-death proteases in plants. Autophagy 2007, 3:136-138.
-
(2007)
Autophagy
, vol.3
, pp. 136-138
-
-
Bozhkov, P.1
Jansson, C.2
-
53
-
-
33847613456
-
Mitochondrial redox biology and homeostasis in plants
-
Noctor G., De Paepe R., Foyer C.H. Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci. 2007, 12:126-134.
-
(2007)
Trends Plant Sci.
, vol.12
, pp. 126-134
-
-
Noctor, G.1
De Paepe, R.2
Foyer, C.H.3
-
54
-
-
3843128438
-
A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death
-
Hatsugai N., Kuroyanagi M., Yamada K., Meshi T., Tsuda S., Kondo M., Nishimura M., Hara-Nishimura I. A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science 2004, 305:855-858.
-
(2004)
Science
, vol.305
, pp. 855-858
-
-
Hatsugai, N.1
Kuroyanagi, M.2
Yamada, K.3
Meshi, T.4
Tsuda, S.5
Kondo, M.6
Nishimura, M.7
Hara-Nishimura, I.8
-
55
-
-
65549157489
-
Autophagic components contribute to hypersensitive cell death in Arabidopsis
-
Hofius D., Schultz-Larsen T., Joensen J., Tsitsigiannis D.I., Petersen N.H., Mattsson O., Jørgensen L.B., Jones J.D., Mundy J., Petersen M. Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 2009, 137:773-783.
-
(2009)
Cell
, vol.137
, pp. 773-783
-
-
Hofius, D.1
Schultz-Larsen, T.2
Joensen, J.3
Tsitsigiannis, D.I.4
Petersen, N.H.5
Mattsson, O.6
Jørgensen, L.B.7
Jones, J.D.8
Mundy, J.9
Petersen, M.10
-
56
-
-
19344368318
-
Autophagy regulates programmed cell death during the plant innate immune response
-
Liu Y., Schiff M., Czymmek K., Tallyczy Z., Levine B., Dinesh-Kumar S.P. Autophagy regulates programmed cell death during the plant innate immune response. Cell 2005, 121:567-577.
-
(2005)
Cell
, vol.121
, pp. 567-577
-
-
Liu, Y.1
Schiff, M.2
Czymmek, K.3
Tallyczy, Z.4
Levine, B.5
Dinesh-Kumar, S.P.6
-
57
-
-
38049001895
-
Arabidopsis ATG6 is required to limit the pathogen-associated cell death response
-
Patel S., Dinesh-Kumar S.P. Arabidopsis ATG6 is required to limit the pathogen-associated cell death response. Autophagy 2008, 4:20-27.
-
(2008)
Autophagy
, vol.4
, pp. 20-27
-
-
Patel, S.1
Dinesh-Kumar, S.P.2
-
58
-
-
75149116267
-
Plant autophagy puts the brakes on cell death by controlling salicylic acid signaling
-
Yoshimoto K. Plant autophagy puts the brakes on cell death by controlling salicylic acid signaling. Autophagy 2010, 6:192-193.
-
(2010)
Autophagy
, vol.6
, pp. 192-193
-
-
Yoshimoto, K.1
-
60
-
-
78649497797
-
From signal transduction to autophagy of plant cell organelles: lessons from yeast and mammals and plant-specific features
-
Reumann S., Voitsekhovskaja O., Lillo C. From signal transduction to autophagy of plant cell organelles: lessons from yeast and mammals and plant-specific features. Protoplasma 2010, 247:233-256.
-
(2010)
Protoplasma
, vol.247
, pp. 233-256
-
-
Reumann, S.1
Voitsekhovskaja, O.2
Lillo, C.3
-
61
-
-
0034192503
-
Does the plant mitochondrion integrate cellular stress and regulate programmed cell death?
-
Jones A. Does the plant mitochondrion integrate cellular stress and regulate programmed cell death?. Trends Plant Sci. 2000, 5:225-230.
-
(2000)
Trends Plant Sci.
, vol.5
, pp. 225-230
-
-
Jones, A.1
-
62
-
-
4043160619
-
Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.)
-
Bartoli C.G., Gomez F., Martinez D.E., Guiamet J.J. Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.). J. Exp. Bot. 2004, 55:1663-1669.
-
(2004)
J. Exp. Bot.
, vol.55
, pp. 1663-1669
-
-
Bartoli, C.G.1
Gomez, F.2
Martinez, D.E.3
Guiamet, J.J.4
-
63
-
-
27844605495
-
Superoxide generation from mitochondrial NADH dehydrogenase induces self-inactivation with specific protein radical formation
-
Chen Y.R., Chen C.L., Zhang L., Green-Church K.B., Zweier J.L. Superoxide generation from mitochondrial NADH dehydrogenase induces self-inactivation with specific protein radical formation. J. Biol. Chem. 2005, 280:37339-37348.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 37339-37348
-
-
Chen, Y.R.1
Chen, C.L.2
Zhang, L.3
Green-Church, K.B.4
Zweier, J.L.5
-
64
-
-
0037490142
-
Reversible glutathionylation of complex I increases mitochondrial superoxide formation
-
Taylor E.R., Hurrell F., Shannon R.J., Lin T.K., Hirst J., Murphy M.P. Reversible glutathionylation of complex I increases mitochondrial superoxide formation. J. Biol. Chem. 2003, 278:19603-19610.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 19603-19610
-
-
Taylor, E.R.1
Hurrell, F.2
Shannon, R.J.3
Lin, T.K.4
Hirst, J.5
Murphy, M.P.6
-
65
-
-
33845667960
-
Reactive oxygen species generation and antioxidant systems in plant mitochondria
-
Navrot N., Rouhier N., Gelhaye E., Jacquo J.-P. Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol. Plant. 2007, 129:185-195.
-
(2007)
Physiol. Plant.
, vol.129
, pp. 185-195
-
-
Navrot, N.1
Rouhier, N.2
Gelhaye, E.3
Jacquo, J.-P.4
-
66
-
-
0039174315
-
Mitochondrial aconitase is a source of hydroxyl radical. An electron spin resonance investigation
-
Vasquez-Vivar J., Kalyanaraman B., Kennedy M.C. Mitochondrial aconitase is a source of hydroxyl radical. An electron spin resonance investigation. J. Biol. Chem. 2000, 275:14064-14069.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 14064-14069
-
-
Vasquez-Vivar, J.1
Kalyanaraman, B.2
Kennedy, M.C.3
-
67
-
-
0023574890
-
Electron transfer from protein to DNA in irradiated chromatin
-
Cullis P.M., Jones G.D., Symons M.C., Lea J.S. Electron transfer from protein to DNA in irradiated chromatin. Nature 1987, 330:773-774.
-
(1987)
Nature
, vol.330
, pp. 773-774
-
-
Cullis, P.M.1
Jones, G.D.2
Symons, M.C.3
Lea, J.S.4
-
68
-
-
0031032817
-
Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress
-
Yakes F.M., Van H.B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl. Acad. Sci. U. S. A. 1997, 94:514-519.
-
(1997)
Proc. Natl. Acad. Sci. U. S. A.
, vol.94
, pp. 514-519
-
-
Yakes, F.M.1
Van, H.B.2
-
69
-
-
3242749880
-
Protein oxidation in plant mitochondria as a stress indicator
-
Møller I.M., Kristensen B.K. Protein oxidation in plant mitochondria as a stress indicator. Photochem. Photobiol. Sci. 2004, 3:730-735.
-
(2004)
Photochem. Photobiol. Sci.
, vol.3
, pp. 730-735
-
-
Møller, I.M.1
Kristensen, B.K.2
-
70
-
-
3242776324
-
Identification of oxidised proteins in the matrix of rice leaf mitochondria by immunoprecipitation and two-dimensional liquid chromatography-tandem mass spectrometry
-
Kristensen B.K., Askerlund P., Bykova N.V., Egsgaard H., Møller I.M. Identification of oxidised proteins in the matrix of rice leaf mitochondria by immunoprecipitation and two-dimensional liquid chromatography-tandem mass spectrometry. Phytochemistry 2004, 65:1839-1851.
-
(2004)
Phytochemistry
, vol.65
, pp. 1839-1851
-
-
Kristensen, B.K.1
Askerlund, P.2
Bykova, N.V.3
Egsgaard, H.4
Møller, I.M.5
-
71
-
-
0037509843
-
Towards an analysis of the rice mitochondrial proteome
-
Heazlewood J.L., Howell K.A., Whelan J., Millar A.H. Towards an analysis of the rice mitochondrial proteome. Plant Physiol. 2003, 132:230-242.
-
(2003)
Plant Physiol.
, vol.132
, pp. 230-242
-
-
Heazlewood, J.L.1
Howell, K.A.2
Whelan, J.3
Millar, A.H.4
-
72
-
-
1642547067
-
Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco Bright-Yellow 2 cells
-
Vacca R.A., de Pinto M.C., Valenti D., Passarella S., Marra E., De Gara L. Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco Bright-Yellow 2 cells. Plant Physiol. 2004, 134:1100-1112.
-
(2004)
Plant Physiol.
, vol.134
, pp. 1100-1112
-
-
Vacca, R.A.1
de Pinto, M.C.2
Valenti, D.3
Passarella, S.4
Marra, E.5
De Gara, L.6
-
73
-
-
77952055233
-
Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems
-
Blokhina O., Fagerstedt K.V. Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems. Physiol. Plant. 2010, 138:447-462.
-
(2010)
Physiol. Plant.
, vol.138
, pp. 447-462
-
-
Blokhina, O.1
Fagerstedt, K.V.2
-
74
-
-
0344875538
-
Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants
-
Chew O., Whelan J., Millar A.H. Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J. Biol. Chem. 2003, 278:46869-46877.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 46869-46877
-
-
Chew, O.1
Whelan, J.2
Millar, A.H.3
-
75
-
-
10744230621
-
Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria
-
Balmer Y., Vensel W.H., Tanaka C.K., Hurkman W.J., Gelhaye E., Rouhier N., Jacquot J.P., Manieri W., Schürmann P., Droux M., Buchanan B.B. Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria. Proc. Natl. Acad. Sci. U. S. A. 2004, 101:2642-2647.
-
(2004)
Proc. Natl. Acad. Sci. U. S. A.
, vol.101
, pp. 2642-2647
-
-
Balmer, Y.1
Vensel, W.H.2
Tanaka, C.K.3
Hurkman, W.J.4
Gelhaye, E.5
Rouhier, N.6
Jacquot, J.P.7
Manieri, W.8
Schürmann, P.9
Droux, M.10
Buchanan, B.B.11
-
76
-
-
33746589081
-
Alternative oxidases in Arabidopsis: a comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses
-
Clifton R., Millar A.H., Whelan J. Alternative oxidases in Arabidopsis: a comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses. Biochim. Biophys. Acta 2006, 1757:730-741.
-
(2006)
Biochim. Biophys. Acta
, vol.1757
, pp. 730-741
-
-
Clifton, R.1
Millar, A.H.2
Whelan, J.3
-
77
-
-
70450237830
-
Is the maintenance of homeostatic mitochondrial signaling during stress a physiological role for alternative oxidase?
-
Vanlerberghe G.C., Cvetkovska M., Wang J. Is the maintenance of homeostatic mitochondrial signaling during stress a physiological role for alternative oxidase?. Physiol. Plant. 2009, 137:392-406.
-
(2009)
Physiol. Plant.
, vol.137
, pp. 392-406
-
-
Vanlerberghe, G.C.1
Cvetkovska, M.2
Wang, J.3
-
78
-
-
70450225552
-
Manipulation of alternative oxidase can influence salt tolerance in Arabidopsis thaliana
-
Smith C.A., Melino V.J., Sweetman C., Soole K.L. Manipulation of alternative oxidase can influence salt tolerance in Arabidopsis thaliana. Physiol. Plant. 2009, 137:459-472.
-
(2009)
Physiol. Plant.
, vol.137
, pp. 459-472
-
-
Smith, C.A.1
Melino, V.J.2
Sweetman, C.3
Soole, K.L.4
-
80
-
-
1842529224
-
The uncoupling protein and the potassium channel are activated by hyperosmotic stress in mitochondria from durum wheat seedlings
-
Trono D., Flagella Z., Laus M.N., Di Fonzo N., Pastore D. The uncoupling protein and the potassium channel are activated by hyperosmotic stress in mitochondria from durum wheat seedlings. Plant Cell Environ. 2004, 27:437-448.
-
(2004)
Plant Cell Environ.
, vol.27
, pp. 437-448
-
-
Trono, D.1
Flagella, Z.2
Laus, M.N.3
Di Fonzo, N.4
Pastore, D.5
-
81
-
-
16844366524
-
Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging
-
Lemasters J.J. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res. 2005, 8:3-5.
-
(2005)
Rejuvenation Res.
, vol.8
, pp. 3-5
-
-
Lemasters, J.J.1
-
82
-
-
76449083770
-
The molecular mechanism of mitochondria autophagy in yeast
-
Kanki T., Klionsky D.J. The molecular mechanism of mitochondria autophagy in yeast. Mol. Microbiol. 2010, 75:795-800.
-
(2010)
Mol. Microbiol.
, vol.75
, pp. 795-800
-
-
Kanki, T.1
Klionsky, D.J.2
-
83
-
-
71849099747
-
Reactive oxygen species in Phanerochaete chrysosporium: relationship between extracellular oxidative and intracellular antioxidant systems
-
Morel M., Ngadin A.A., Jacquot J.-P., Gelhaye E. Reactive oxygen species in Phanerochaete chrysosporium: relationship between extracellular oxidative and intracellular antioxidant systems. Adv. Bot. Res. 2009, 52:153-186.
-
(2009)
Adv. Bot. Res.
, vol.52
, pp. 153-186
-
-
Morel, M.1
Ngadin, A.A.2
Jacquot, J.-P.3
Gelhaye, E.4
-
85
-
-
78349275317
-
Mitophagy in yeast: actors and physiological roles
-
Bhatia-KiŠŠová I., Camougrand N. Mitophagy in yeast: actors and physiological roles. FEMS Yeast Res. 2010, 10:1023-1034.
-
(2010)
FEMS Yeast Res.
, vol.10
, pp. 1023-1034
-
-
Bhatia-KiŠŠová, I.1
Camougrand, N.2
-
86
-
-
69649090647
-
Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis
-
Betin V.M., Lane J.D. Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis. J. Cell Sci. 2009, 15:2554-2566.
-
(2009)
J. Cell Sci.
, vol.15
, pp. 2554-2566
-
-
Betin, V.M.1
Lane, J.D.2
-
87
-
-
34247172582
-
Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival
-
Tal R., Winter G., Ecker N., Klionsky D.J., Abeliovich H. Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival. J. Biol. Chem. 2007, 282:5617-5624.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 5617-5624
-
-
Tal, R.1
Winter, G.2
Ecker, N.3
Klionsky, D.J.4
Abeliovich, H.5
-
88
-
-
73449095225
-
Atg32 is a tag for mitochondria degradation in yeast
-
Kanki T., Klionsky D.J. Atg32 is a tag for mitochondria degradation in yeast. Autophagy 2009, 5:1201-1202.
-
(2009)
Autophagy
, vol.5
, pp. 1201-1202
-
-
Kanki, T.1
Klionsky, D.J.2
-
90
-
-
70349649218
-
Atg4D at the interface between autophagy and apoptosis
-
Betin V.M., Lane J.D. Atg4D at the interface between autophagy and apoptosis. Autophagy 2009, 5:1057-1059.
-
(2009)
Autophagy
, vol.5
, pp. 1057-1059
-
-
Betin, V.M.1
Lane, J.D.2
-
91
-
-
67649363854
-
Glutathione participates in the regulation of mitophagy in yeast
-
Deffieu M., Bhatia-KiŠŠová I., Salin B., Galinier A., Manon S., Camougrand N. Glutathione participates in the regulation of mitophagy in yeast. J. Biol. Chem. 2009, 284:14828-14837.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 14828-14837
-
-
Deffieu, M.1
Bhatia-KiŠŠová, I.2
Salin, B.3
Galinier, A.4
Manon, S.5
Camougrand, N.6
|