메뉴 건너뛰기




Volumn , Issue , 2010, Pages 71-80

Recent advances in nonlinear dimensionality reduction, manifold and topological learning

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMIC APPROACH; DIGITAL DATABASE; DIMENSIONALITY REDUCTION; MANIFOLD LEARNING; NONLINEAR DIMENSIONALITY REDUCTION; QUALITY ASSESSMENT; QUANTITIVE; REAL-WORLD;

EID: 84865697984     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (53)

References (78)
  • 1
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2:559-572, 1901.
    • (1901) Philosophical Magazine , vol.2 , pp. 559-572
    • Pearson, K.1
  • 2
    • 58149421595 scopus 로고
    • Analysis of a complex of statistical variables into principal components
    • H. Hotelling. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24:417-441, 1933.
    • (1933) Journal of Educational Psychology , vol.24 , pp. 417-441
    • Hotelling, H.1
  • 4
    • 0002361037 scopus 로고
    • Discussion of a set of points in terms of their mutual distances
    • G. Young and A.S. Householder. Discussion of a set of points in terms of their mutual distances. Psychometrika, 3:19-22, 1938.
    • (1938) Psychometrika , vol.3 , pp. 19-22
    • Young, G.1    Householder, A.S.2
  • 7
    • 84887006810 scopus 로고
    • A nonlinear mapping algorithm for data structure analysis
    • J.W. Sammon. A nonlinear mapping algorithm for data structure analysis. IEEE Transactions on Computers, CC-18(5):401-409, 1969.
    • (1969) IEEE Transactions On Computers , vol.18 , Issue.5 , pp. 401-409
    • Sammon, J.W.1
  • 8
    • 0030736375 scopus 로고    scopus 로고
    • Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets
    • January
    • P. Demartines and J. Héerault. Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets. IEEE Transactions on Neural Networks, 8(1):148-154, January 1997.
    • (1997) IEEE Transactions On Neural Networks , vol.8 , Issue.1 , pp. 148-154
    • Demartines, P.1    Héerault, J.2
  • 9
    • 84958976659 scopus 로고    scopus 로고
    • Neighborhood preservation in nonlinear projection methods: An experimental study
    • J. Venna and S. Kaski. Neighborhood preservation in nonlinear projection methods: An experimental study. In ICANN, pages 485-491, 2001.
    • (2001) ICANN , pp. 485-491
    • Venna, J.1    Kaski, S.2
  • 10
    • 61849137245 scopus 로고    scopus 로고
    • Quality assessment of dimensionality reduction: Rank-based criteria
    • J.A. Lee and M. Verleysen. Quality assessment of dimensionality reduction: Rank-based criteria. Neurocomputing, 72(7-9):1431-1443, 2009.
    • (2009) Neurocomputing , vol.72 , Issue.7-9 , pp. 1431-1443
    • Lee, J.A.1    Verleysen, M.2
  • 11
    • 84871920533 scopus 로고    scopus 로고
    • Visualizing gene interaction graphs with local multidimensional scaling
    • April In M. Verleysen, editor, d-side, Bruges, Belgium
    • J. Venna and S. Kaski. Visualizing gene interaction graphs with local multidimensional scaling. In M. Verleysen, editor, Proc. ESANN 2006, 14th European Symposium on Artificial Neural Networks, pages 557-562. d-side, Bruges, Belgium, April 2006.
    • (2006) Proc. ESANN 2006, 14th European Symposium On Artificial Neural Networks , pp. 557-562
    • Venna, J.1    Kaski, S.2
  • 12
    • 33746617306 scopus 로고    scopus 로고
    • Local multidimensional scaling
    • J. Venna and S. Kaski. Local multidimensional scaling. Neural Networks, 19:889-899, 2006.
    • (2006) Neural Networks , vol.19 , pp. 889-899
    • Venna, J.1    Kaski, S.2
  • 13
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • December
    • J.B. Tenenbaum, V. de Silva, and J.C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, December 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 15
    • 1542680971 scopus 로고    scopus 로고
    • Curvilinear distance analysis versus isomap
    • March
    • J.A. Lee and M. Verleysen. Curvilinear distance analysis versus isomap. Neurocomputing, 57:49-76, March 2004.
    • (2004) Neurocomputing , vol.57 , pp. 49-76
    • Lee, J.A.1    Verleysen, M.2
  • 16
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • June
    • M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6):1373-1396, June 2003.
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 18
    • 33744949513 scopus 로고    scopus 로고
    • Unsupervised learning of image manifolds by semidefinite programming
    • K.Q. Weinberger and L.K. Saul. Unsupervised learning of image manifolds by semidefinite programming. International Journal of Computer Vision, 70(1):77-90, 2006.
    • (2006) International Journal of Computer Vision , vol.70 , Issue.1 , pp. 77-90
    • Weinberger, K.Q.1    Saul, L.K.2
  • 19
    • 84898964829 scopus 로고    scopus 로고
    • Stochastic neighbor embedding
    • S. Becker, S. Thrun, and K. Obermayer, editors, MIT Press
    • G. Hinton and S.T. Roweis. Stochastic neighbor embedding. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems (NIPS 2002), volume 15, pages 833-840. MIT Press, 2003.
    • (2003) Advances In Neural Information Processing Systems (NIPS 2002) , vol.15 , pp. 833-840
    • Hinton, G.1    Roweis, S.T.2
  • 23
    • 79951924106 scopus 로고    scopus 로고
    • Stratification learning: Detecting mixed density and dimensionality in high dimensional point clouds
    • G. Haro, G. Randall, and G. Sapiro. Stratification learning: Detecting mixed density and dimensionality in high dimensional point clouds. In Proc. NIPS, 2007.
    • (2007) Proc. NIPS
    • Haro, G.1    Randall, G.2    Sapiro, G.3
  • 27
    • 84886995543 scopus 로고    scopus 로고
    • Topology representing network for sensor-based robot motion planning
    • INNS Press
    • M. Zeller, R. Sharma, and K. Schulten. Topology representing network for sensor-based robot motion planning. In Proc. WCNN. INNS Press.
    • In Proc. WCNN
    • Zeller, M.1    Sharma, R.2    Schulten, K.3
  • 28
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7:2399-2434, 2006.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 32
    • 0242665530 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction techniques for classification and visualization
    • M. Vlachos, C. Domeniconi, D. Gunopulos, G. Kollios, and N. Koudas. Nonlinear dimensionality reduction techniques for classification and visualization. In Proc. KDD, 2002.
    • (2002) Proc. KDD
    • Vlachos, M.1    Domeniconi, C.2    Gunopulos, D.3    Kollios, G.4    Koudas, N.5
  • 33
    • 84864060454 scopus 로고    scopus 로고
    • Combining graph laplacians for semi-supervised learning
    • A. Argyriou, M. Herbster, and M. Pontil. Combining graph laplacians for semi-supervised learning. In Proc. NIPS, 2005.
    • (2005) Proc. NIPS
    • Argyriou, A.1    Herbster, M.2    Pontil, M.3
  • 34
    • 84880203756 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In Proc. NIPS, 2002.
    • (2002) Proc. NIPS
    • Belkin, M.1    Niyogi, P.2
  • 35
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395-416, 2007.
    • (2007) Statistics and Computing , vol.17 , Issue.4 , pp. 395-416
    • von Luxburg, U.1
  • 37
    • 84899013108 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an anlgorithm
    • A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: analysis and an anlgorithm. In Proc. NIPS, 2002.
    • (2002) Proc. NIPS
    • Ng, A.1    Jordan, M.2    Weiss, Y.3
  • 39
    • 0033465068 scopus 로고    scopus 로고
    • Surface reconstruction by Voronoi filtering
    • N. Amenta and M. Bern. Surface reconstruction by Voronoi filtering. Discrete and Computational Geometry, 22(4):481-504, 1999.
    • (1999) Discrete and Computational Geometry , vol.22 , Issue.4 , pp. 481-504
    • Amenta, N.1    Bern, M.2
  • 43
    • 40349102105 scopus 로고    scopus 로고
    • Finding the homology of submanifolds with high confidence from random samples
    • P. Niyogi, S. Smale, and S. Weinberger. Finding the homology of submanifolds with high confidence from random samples. Discrete and Computational Geometry, 39(1-3):419-441, 2006.
    • (2006) Discrete and Computational Geometry , vol.39 , Issue.1-3 , pp. 419-441
    • Niyogi, P.1    Smale, S.2    Weinberger, S.3
  • 45
    • 33748062672 scopus 로고    scopus 로고
    • Topology guaranteeing manifold reconstruction using distance function to noisy data
    • F. Chazal and A. Lieutier. Topology guaranteeing manifold reconstruction using distance function to noisy data. In Proc. Symp. on Computational Geometry, 2006.
    • (2006) Proc. Symp. On Computational Geometry
    • Chazal, F.1    Lieutier, A.2
  • 48
    • 40649101705 scopus 로고    scopus 로고
    • Learning topology with the generative gaussian graph and the em algorithm
    • M. Aupetit. Learning topology with the generative gaussian graph and the em algorithm. In Proc. of NIPS, 2005.
    • (2005) Proc. of NIPS
    • Aupetit, M.1
  • 49
    • 0025489075 scopus 로고
    • The self-organizing map
    • T. Kohonen. The self-organizing map. Proc. IEEE, 78(9):1464-1480, 1990.
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1464-1480
    • Kohonen, T.1
  • 50
    • 0031097231 scopus 로고    scopus 로고
    • Topology preservation in self-organizing feature maps: Exact definition and measurement
    • T. Villmann, R. Der, M. Herrmann, and T. Martinetz. Topology preservation in self-organizing feature maps: Exact definition and measurement. IEEE Transactions on Neural Networks, 8(2):256-266, 1997.
    • (1997) IEEE Transactions On Neural Networks , vol.8 , Issue.2 , pp. 256-266
    • Villmann, T.1    Der, R.2    Herrmann, M.3    Martinetz, T.4
  • 51
    • 0026898892 scopus 로고
    • Quantifying the neighborhood preservation of Self-Organizing Feature Maps
    • H.-U. Bauer and K.R. Pawelzik. Quantifying the neighborhood preservation of Self-Organizing Feature Maps. IEEE Trans. on Neural Networks, 3(4):570-579, 1992.
    • (1992) IEEE Trans. On Neural Networks , vol.3 , Issue.4 , pp. 570-579
    • Bauer, H.-U.1    Pawelzik, K.R.2
  • 52
    • 0001449448 scopus 로고    scopus 로고
    • Controlling the magnification factor of self-organizing feature maps
    • H. U. Bauer, R. Der, and M. Herrmann. Controlling the magnification factor of self-organizing feature maps. Neural Computation, 8(4):757-71, 1996.
    • (1996) Neural Computation , vol.8 , Issue.4 , pp. 757-771
    • Bauer, H.U.1    Der, R.2    Herrmann, M.3
  • 53
    • 0036133934 scopus 로고    scopus 로고
    • Clustering based on conditional distributions in an auxiliary space
    • J. Sinkkonen and S. Kaski. Clustering based on conditional distributions in an auxiliary space. Neural Computation, 14:217-239, 2002.
    • (2002) Neural Computation , vol.14 , pp. 217-239
    • Sinkkonen, J.1    Kaski, S.2
  • 54
    • 2142684345 scopus 로고    scopus 로고
    • Generative probability density model in the self-organizing map
    • In U. Seiffert and L.C. Jain, editors, Physica-Verlag, Heidelberg, New York
    • J. Lampinen and T. Kostiainen. Generative probability density model in the self-organizing map. In U. Seiffert and L.C. Jain, editors, Self-Organizing Neural Networks, Studies in Fuzzi-ness and Soft Computing, pages 75-92. Physica-Verlag, Heidelberg, New York, 2001.
    • (2001) Self-Organizing Neural Networks, Studies In Fuzzi-ness and Soft Computing , pp. 75-92
    • Lampinen, J.1    Kostiainen, T.2
  • 56
    • 21744458509 scopus 로고    scopus 로고
    • Locally linear embedding versus Isotop
    • on Art. Neur. Netw. (ESANN), Bruges, Belgium, d-side publishers
    • J.A. Lee, C. Archambeau, and M. Verleysen. Locally linear embedding versus Isotop. In Proc. of the 11th Europ. Symp. on Art. Neur. Netw. (ESANN), pages 527-534, Bruges, Belgium, 2003. d-side publishers.
    • (2003) Proc. of the 11th Europ. Symp , pp. 527-534
    • Lee, J.A.1    Archambeau, C.2    Verleysen, M.3
  • 57
    • 0036825529 scopus 로고    scopus 로고
    • The deformable feature map - a novel neurocomputing algorithm for adaptive plasticity in pattern analysis
    • A. Wismüller, F. Vietze, D.R. Dersch, J. Behrends, K. Hahn, and H. Ritter. The deformable feature map - a novel neurocomputing algorithm for adaptive plasticity in pattern analysis. Neurocomputing, 48:107-139, 2002.
    • (2002) Neurocomputing , vol.48 , pp. 107-139
    • Wismüller, A.1    Vietze, F.2    Dersch, D.R.3    Behrends, J.4    Hahn, K.5    Ritter, H.6
  • 65
    • 66749128538 scopus 로고    scopus 로고
    • The exploration machine: A novel method for analyzing high-dimensional data in computer-aided diagnosis
    • 72600G-72600G-7, N. Karssemeijer and M. Giger, editors
    • A. Wismüller. The exploration machine: a novel method for analyzing high-dimensional data in computer-aided diagnosis. In N. Karssemeijer and M. Giger, editors, Medical Imaging 2009: Computer-Aided Diagnosis. Proc. SPIE, volume 7260, pages 72600G-72600G-7, 2009.
    • (2009) Medical Imaging 2009: Computer-Aided Diagnosis, Proc. SPIE , vol.7260
    • Wismüller, A.1
  • 67
    • 84887014256 scopus 로고    scopus 로고
    • Exploratory Observation Machine (XOM) with Kullback-Leibler divergence for dimensionality reduction and visualization In Proc. of the 18th Europ. Symp. on Art Neur. Netw. (ESANN), d-side publishers
    • K. Bunte, B. Hammer, T. Villmann, M. Biehl, and A. Wismüller. Exploratory Observation Machine (XOM) with Kullback-Leibler divergence for dimensionality reduction and visualization In Proc. of the 18th Europ. Symp. on ArtNeur. Netw. (ESANN), Bruges, Belgium, 2010. d-side publishers.
    • (2010)
    • Bunte, K.1    Hammer, B.2    Villmann, T.3    Biehl, M.4    Wismüller, A.5
  • 69
    • 33847360579 scopus 로고    scopus 로고
    • Visualizing distortions and recovering topology in continuous projection techniques
    • M. Aupetit. Visualizing distortions and recovering topology in continuous projection techniques. Neurocomputing, 70(7-9):1304-1330, 2007.
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1304-1330
    • Aupetit, M.1
  • 70
  • 71
    • 38049168357 scopus 로고    scopus 로고
    • SOM-based data visualization methods
    • J. Vesanto. SOM-based data visualization methods. Intelligent Data Analysis, 3(2):111-126, 1999.
    • (1999) Intelligent Data Analysis , vol.3 , Issue.2 , pp. 111-126
    • Vesanto, J.1
  • 72
    • 0041803949 scopus 로고
    • Kohonen networks on transputers: Implementation and animation
    • Kluwer Academic Press, Paris
    • H.P. Siemon and A. Ultsch. Kohonen networks on transputers: Implementation and animation. In International Neural Networks, pages 643-646. Kluwer Academic Press, Paris, 1990.
    • (1990) International Neural Networks , pp. 643-646
    • Siemon, H.P.1    Ultsch, A.2
  • 74
    • 84902165135 scopus 로고    scopus 로고
    • Distance between kohonen classes, visualization tool to use som in data set analysis and representation
    • J. Mira and A. Prieto, editors, LNCS 2085, Springer-Verlag
    • P. Rousset and C. Guinot. Distance between kohonen classes, visualization tool to use som in data set analysis and representation. In J. Mira and A. Prieto, editors, Proc. Intl. Workshop on Artificial Neural Networks (IWANN'01), LNCS 2085, pages 119-126. Springer-Verlag, 2001.
    • (2001) Proc. Intl. Workshop On Artificial Neural Networks (IWANN'01 , pp. 119-126
    • Rousset, P.1    Guinot, C.2
  • 75
    • 84886999298 scopus 로고    scopus 로고
    • Graph projection techniques for self-organizing maps
    • In Michel Verleysen, editor, Bruges, Belgium, April 27-29 2005. d-side publications
    • G. Pölzlbauer, A. Rauber, and M. Dittenbach. Graph projection techniques for self-organizing maps. In Michel Verleysen, editor, Proc. European Symposium on Artificial Neural Networks (ESANN'05), pages 533-538, Bruges, Belgium, April 27-29 2005. d-side publications.
    • Proc. European Symposium On Artificial Neural Networks (ESANN'05) , pp. 533-538
    • Pölzlbauer, G.1    Rauber, A.2    Dittenbach, M.3
  • 76
    • 67349242966 scopus 로고    scopus 로고
    • Exploiting data topology in visualization and clustering of selforganizing maps
    • K. Tasdemir and E. Merényi. Exploiting data topology in visualization and clustering of selforganizing maps. IEEE Trans. on Neural Networks, 20(4):549-562, 2009.
    • (2009) IEEE Trans. On Neural Networks , vol.20 , Issue.4 , pp. 549-562
    • Tasdemir, K.1    Merényi, E.2
  • 78
    • 40649110460 scopus 로고    scopus 로고
    • Learning topology of a labeled data set with the supervised generative gaussian graph
    • P. Gaillard, M. Aupetit, and G. Govaert. Learning topology of a labeled data set with the supervised generative gaussian graph. Neurocomputing, 71(7-9):1283-1299, 2008.
    • (2008) Neurocomputing , vol.71 , Issue.7-9 , pp. 1283-1299
    • Gaillard, P.1    Aupetit, M.2    Govaert, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.