메뉴 건너뛰기




Volumn 5629 LNCS, Issue , 2009, Pages 334-343

A computational framework for nonlinear dimensionality reduction and clustering

Author keywords

[No Author keywords available]

Indexed keywords

CLASSICAL TOPOLOGIES; CLUSTER STRUCTURE; COMPUTATIONAL FRAMEWORK; COMPUTATIONAL SAVINGS; CONVENTIONAL APPROACH; CONVENTIONAL TOPOLOGIES; FEATURE MAPPING; FUNCTIONAL COMPONENTS; GRAPHICAL DISPLAYS; INPUT DATAS; KNOWLEDGE DISCOVERY; LARGE DATA; MAPPING ALGORITHMS; NONLINEAR DIMENSIONALITY REDUCTION; NONLINEAR EMBEDDING; SCIENTIFIC DATA; SELF-ORGANIZATIONS; STRUCTURE-PRESERVING;

EID: 69049087809     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-02397-2_38     Document Type: Conference Paper
Times cited : (66)

References (14)
  • 1
  • 3
    • 0023657610 scopus 로고
    • An analogue approach to the travelling salesman problem using an elastic net method
    • Durbin, R.,Willshaw, D.: An analogue approach to the travelling salesman problem using an elastic net method. Nature 326, 689-691 (1987)
    • (1987) Nature , vol.326 , pp. 689-691
    • Durbin, R.1    Willshaw, D.2
  • 5
    • 84956853519 scopus 로고    scopus 로고
    • Flexer, A.: On the use of self-organizing maps for clustering and visualization. In: Zytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS, 1704, pp. 80-88. Springer, Heidelberg (1999)
    • Flexer, A.: On the use of self-organizing maps for clustering and visualization. In: Zytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS, vol. 1704, pp. 80-88. Springer, Heidelberg (1999)
  • 6
    • 0000687284 scopus 로고    scopus 로고
    • A unifying objective function for topographic mappings
    • Goodhill, G.J., Sejnowski, T.: A unifying objective function for topographic mappings. Neural Comp. 9, 1291-1303 (1997)
    • (1997) Neural Comp , vol.9 , pp. 1291-1303
    • Goodhill, G.J.1    Sejnowski, T.2
  • 7
    • 0000787409 scopus 로고    scopus 로고
    • Phase transitions in stochastic selforganizing maps
    • Graepel, T., Burger, M., Obermayer, K.: Phase transitions in stochastic selforganizing maps. Physical Review E 56(4), 3876-3890 (1997)
    • (1997) Physical Review E , vol.56 , Issue.4 , pp. 3876-3890
    • Graepel, T.1    Burger, M.2    Obermayer, K.3
  • 8
    • 13844291291 scopus 로고    scopus 로고
    • Data exploration using self-organizing maps
    • Act Polytech Scand, Mathematics
    • Kaski, S.: Data exploration using self-organizing maps. Act Polytech Scand, Mathematics, Computing and Management in Engineering Series No. 82 (1997)
    • (1997) Computing and Management in Engineering Series , vol.82
    • Kaski, S.1
  • 10
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • Milligan, G.W., Cooper, M.C.: An examination of procedures for determining the number of clusters in a data set. Psychometrika 50, 159-179 (1985)
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 12
    • 38049168357 scopus 로고    scopus 로고
    • SOM-based data visualization methods
    • Vesanto, J.: SOM-based data visualization methods. Intelligent Data Analysis 3, 111-126 (1999)
    • (1999) Intelligent Data Analysis , vol.3 , pp. 111-126
    • Vesanto, J.1
  • 13
    • 0032039244 scopus 로고    scopus 로고
    • Constrained optimization for neural map formation: A unifying framework for weight growth and normalization
    • Wiskott, L., Sejnowski, T.: Constrained optimization for neural map formation: a unifying framework for weight growth and normalization. Neural Comp. 10, 671-716 (1998)
    • (1998) Neural Comp , vol.10 , pp. 671-716
    • Wiskott, L.1    Sejnowski, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.