메뉴 건너뛰기




Volumn 70, Issue 7-9, 2007, Pages 1304-1330

Visualizing distortions and recovering topology in continuous projection techniques

Author keywords

Continuous projection; Delaunay graph; Distortion visualization; Exploratory data analysis; High dimensional data; Topology recovering; Uncertainty visualization; Vorono cells

Indexed keywords

INDEPENDENT COMPONENT ANALYSIS; PATTERN RECOGNITION; PROJECTION SYSTEMS; TOPOLOGY; UNCERTAINTY ANALYSIS;

EID: 33847360579     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2006.11.018     Document Type: Article
Times cited : (133)

References (37)
  • 1
    • 33846958073 scopus 로고    scopus 로고
    • R. Araar, J. Eagan, J. Stasko, Low-level components of analytic activity in information visualization, in: Proceedings of the 2005 IEEE Symposium on Information Visualization (INFOVIS'3005), 23-25 October, Minneapolis, USA, 2005, pp. 111-117.
  • 2
    • 12144251726 scopus 로고    scopus 로고
    • High-dimensional labeled data analysis with topology representing graphs
    • Aupetit M., and Catz T. High-dimensional labeled data analysis with topology representing graphs. Neurocomputing 63 (2005) 139-169
    • (2005) Neurocomputing , vol.63 , pp. 139-169
    • Aupetit, M.1    Catz, T.2
  • 4
    • 33847357196 scopus 로고    scopus 로고
    • M.K. Beard, B.P. Buttenfield, S.B. Clapham, NGCIA research initiative 7: Visualization of spatial data quality, NCGlA Technical Paper 91-26, National Center for Geographic Information and Analysis, October 1991.
  • 5
  • 6
    • 0035193819 scopus 로고    scopus 로고
    • G.S. Davidson, B.N. Wylie, K.W. Boyack, Cluster stability and the use of noise in interpretation of clustering, in: Proceedings of IEEE Information Visualization (InfoVis'Ol), 2001, pp. 23-30.
  • 7
    • 0030736375 scopus 로고    scopus 로고
    • Curvilinear component analysis: a self-organising neural network for non-linear mapping of data sets
    • Demartines P., and Hérault J. Curvilinear component analysis: a self-organising neural network for non-linear mapping of data sets. IEEE Trans. Neural Networks 8 l (1997) 148-154
    • (1997) IEEE Trans. Neural Networks , vol.8 , Issue.l , pp. 148-154
    • Demartines, P.1    Hérault, J.2
  • 8
    • 58149421595 scopus 로고
    • Analysis of a complex of statistical variables into principal components
    • 498-520
    • Hotelling H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24 (1933) 417-441 498-520
    • (1933) J. Educ. Psychol. , vol.24 , pp. 417-441
    • Hotelling, H.1
  • 9
    • 0004620645 scopus 로고    scopus 로고
    • New tools for handling spatial data quality: moving from academic concepts to practical reality
    • Hunter G.J. New tools for handling spatial data quality: moving from academic concepts to practical reality. URISA J. 11 2 (1999) 25-34
    • (1999) URISA J. , vol.11 , Issue.2 , pp. 25-34
    • Hunter, G.J.1
  • 10
    • 0031997059 scopus 로고    scopus 로고
    • Supervised classification in high-dimensional space: geometrical, statistical and asymptotical properties of multivariate data
    • Jimenez L.O., and Landgrebe D.A. Supervised classification in high-dimensional space: geometrical, statistical and asymptotical properties of multivariate data. IEEE Trans. Syst. Man Cybernet.-Part C: Appl. Rev. 28 l (1998) 39-54
    • (1998) IEEE Trans. Syst. Man Cybernet.-Part C: Appl. Rev. , vol.28 , Issue.l , pp. 39-54
    • Jimenez, L.O.1    Landgrebe, D.A.2
  • 12
    • 0002479386 scopus 로고    scopus 로고
    • Bibliography of self-organizing map (SOM) papers: 1981-1997
    • Kaski S., Kangas J., and Kohonen T. Bibliography of self-organizing map (SOM) papers: 1981-1997. Neural Comput Surv 1 3&4 (1998) 1-176
    • (1998) Neural Comput Surv , vol.1 , Issue.3-4 , pp. 1-176
    • Kaski, S.1    Kangas, J.2    Kohonen, T.3
  • 15
    • 24944533365 scopus 로고
    • Multidimensional scaling: a numerical method
    • Kruskal J.B. Multidimensional scaling: a numerical method. Psychometrika 29 (1964) 115-129
    • (1964) Psychometrika , vol.29 , pp. 115-129
    • Kruskal, J.B.1
  • 17
    • 33847382203 scopus 로고    scopus 로고
    • J.A. Lee, A. Lendasse, M. Verleysen, Curvilinear distance analysis versus isomap, in: European Symposium on Artificial Neural Networks, Bruges, Belgium, d-side eds., 2002, pp. 185-192.
  • 18
    • 0001852251 scopus 로고
    • Visualizing uncertain information
    • MacEachren A.M. Visualizing uncertain information. Cartogr. Perspect. 13 (1992) 10-19
    • (1992) Cartogr. Perspect. , vol.13 , pp. 10-19
    • MacEachren, A.M.1
  • 19
    • 0028204732 scopus 로고
    • Topology representing networks
    • Martinetz T., and Schulten K. Topology representing networks. Neural Networks 7 (1994) 507-522
    • (1994) Neural Networks , vol.7 , pp. 507-522
    • Martinetz, T.1    Schulten, K.2
  • 20
    • 0036643059 scopus 로고    scopus 로고
    • Decision region connectivity analysis: a method for analyzing high-dimensional classifiers
    • Melnik O. Decision region connectivity analysis: a method for analyzing high-dimensional classifiers. Mach. Learning 48 1-3 (2002) 321-351
    • (2002) Mach. Learning , vol.48 , Issue.1-3 , pp. 321-351
    • Melnik, O.1
  • 21
    • 33847412999 scopus 로고    scopus 로고
    • D.J. Newman, S. Hettich, C.L. Blake, C.J. Merz, UCI repository of machine learning databases. Department of Information and Computer Science, University of California at Irvine, Irvine, CA, 1998 〈http://www.ics.uci.edu/mlearn/MLRepository.html〉.
  • 23
    • 0031340632 scopus 로고    scopus 로고
    • Approaches to uncertainty visualization
    • Pang A., Wittenbrink C., and Lodha S. Approaches to uncertainty visualization. Visual Comput. 13 8 (1997) 370-390
    • (1997) Visual Comput. , vol.13 , Issue.8 , pp. 370-390
    • Pang, A.1    Wittenbrink, C.2    Lodha, S.3
  • 24
    • 11244346716 scopus 로고    scopus 로고
    • G. Ross, A. Morrisson, M. Chalmers, Coordinating views for data visualisation and algorithmic profiling, in: Proceedings of Coordinated and Multiple Views in Exploratory Visualization, 2004, pp. 3-14.
  • 25
    • 84902165135 scopus 로고    scopus 로고
    • Distance between Kohonen classes, visualization tool to use SOM in data set analysis and representation
    • Mira J., and Prieto A. (Eds), Springer, Berlin, Heidelberg
    • Rousset P., and Guinot C. Distance between Kohonen classes, visualization tool to use SOM in data set analysis and representation. In: Mira J., and Prieto A. (Eds). IWANN 2001, Lecture Notes in Computer Science, vol. 2085 (2001), Springer, Berlin, Heidelberg 119-126
    • (2001) IWANN 2001, Lecture Notes in Computer Science, vol. 2085 , pp. 119-126
    • Rousset, P.1    Guinot, C.2
  • 26
    • 84887006810 scopus 로고
    • A nonlinear mapping for data structure analysis
    • Sammon Jr. J.W. A nonlinear mapping for data structure analysis. IEEE Trans. Comput. C-18 5 (1969) 401-409
    • (1969) IEEE Trans. Comput. , vol.C-18 , Issue.5 , pp. 401-409
    • Sammon Jr., J.W.1
  • 27
    • 0003043803 scopus 로고
    • A brief description of natural neighbour interpolation
    • Barnet V. (Ed), Wiley, Chichester
    • Sibson R. A brief description of natural neighbour interpolation. In: Barnet V. (Ed). Interpreting Multivariate Data (1981), Wiley, Chichester 21-36
    • (1981) Interpreting Multivariate Data , pp. 21-36
    • Sibson, R.1
  • 28
    • 85122490254 scopus 로고    scopus 로고
    • Topological estimation using witness complexes
    • Alexa M., and Rusinkiewicz S. (Eds), ETH, Zürich, Switzerland
    • de Silva V., and Carlsson G. Topological estimation using witness complexes. In: Alexa M., and Rusinkiewicz S. (Eds). Eurographics Symposium on Point-Based Graphics (2004), ETH, Zürich, Switzerland
    • (2004) Eurographics Symposium on Point-Based Graphics
    • de Silva, V.1    Carlsson, G.2
  • 29
    • 33847372754 scopus 로고    scopus 로고
    • D.F. Swayne, A. Buja, D. Temple Lang, Exploratory visual analysis of graphs in GGobi, in: Proceedings of the 16th Symposium in Computational Statistics (CompStat'04), 2004 〈http://www.ggobi.org〉.
  • 30
    • 80051580482 scopus 로고    scopus 로고
    • K. Tasdemir, E. Merényi, Data topology visualization for the self-organizing map, in: European Symposium on Artificial Neural Networks (ESANN'2006), Bruges, Belgium, d-side eds., April 2006, pp. 277-282.
  • 31
    • 84950351930 scopus 로고
    • Multidimensional scaling I-theory and methods
    • Torgerson W.S. Multidimensional scaling I-theory and methods. Psychometrica 17 (1952) 401-419
    • (1952) Psychometrica , vol.17 , pp. 401-419
    • Torgerson, W.S.1
  • 32
    • 0002535204 scopus 로고
    • Self-organizing neural networks for visualization and classification
    • Opitz O., Lausen B., and Klar R. (Eds), Springer, Berlin
    • Ultsch A. Self-organizing neural networks for visualization and classification. In: Opitz O., Lausen B., and Klar R. (Eds). Information and Classification-Concepts, Methods and Applications (1993), Springer, Berlin 307-313
    • (1993) Information and Classification-Concepts, Methods and Applications , pp. 307-313
    • Ultsch, A.1
  • 34
    • 84958976659 scopus 로고    scopus 로고
    • J. Venna, S. Kaski, Neighborhood preservation in nonlinear projection methods: an experimental study, in: G. Dorffner, H. Bischof, K. Hornik (Eds.), Artificial Neural Networks-ICANN 2001: International Conference on Artificial Neural Networks, Proceedings, Vienna, Austria, Lecture Notes in Computer Science, vol. 2130, 2001, pp. 485-491.
  • 35
    • 38049168357 scopus 로고    scopus 로고
    • SOM-based data visualization methods
    • Vesanto J. SOM-based data visualization methods. Intell. Data Anal. 3 2 (1999) 111-126
    • (1999) Intell. Data Anal. , vol.3 , Issue.2 , pp. 111-126
    • Vesanto, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.