메뉴 건너뛰기




Volumn 71, Issue 7-9, 2008, Pages 1283-1299

Learning topology of a labeled data set with the supervised generative Gaussian graph

Author keywords

Delaunay graph; EM algorithm; Gabriel graph; Mixture models; Supervised topology learning; Topology representing graph

Indexed keywords

COMPUTER SIMULATION; DATABASE SYSTEMS; GRAPH THEORY; SUPERVISED LEARNING;

EID: 40649110460     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2007.12.028     Document Type: Article
Times cited : (16)

References (36)
  • 1
    • 0027228824 scopus 로고    scopus 로고
    • E. Agrell, A method for examining vector quantizer structures, in: Proceedings of IEEE International Symposium on Information Theory, 1993, p. 394.
    • E. Agrell, A method for examining vector quantizer structures, in: Proceedings of IEEE International Symposium on Information Theory, 1993, p. 394.
  • 3
    • 40649101705 scopus 로고    scopus 로고
    • Learning topology with the generative Gaussian graph and the em algorithm
    • Weiss Y., Schölkopf B., and Platt J. (Eds), MIT Press, Cambridge, MA
    • Aupetit M. Learning topology with the generative Gaussian graph and the em algorithm. In: Weiss Y., Schölkopf B., and Platt J. (Eds). Advances in Neural Information Processing Systems vol. 18 (2006), MIT Press, Cambridge, MA 83-90
    • (2006) Advances in Neural Information Processing Systems , vol.18 , pp. 83-90
    • Aupetit, M.1
  • 4
    • 33847360579 scopus 로고    scopus 로고
    • Visualizing distortions and recovering topology in continuous projection techniques
    • Aupetit M. Visualizing distortions and recovering topology in continuous projection techniques. Neurocomputing 70 (2007) 1304-1330
    • (2007) Neurocomputing , vol.70 , pp. 1304-1330
    • Aupetit, M.1
  • 5
    • 12144251726 scopus 로고    scopus 로고
    • High-dimensional labeled data analysis with topology representing graphs
    • Aupetit M., and Catz T. High-dimensional labeled data analysis with topology representing graphs. Neurocomputing 63 (2005) 139-169
    • (2005) Neurocomputing , vol.63 , pp. 139-169
    • Aupetit, M.1    Catz, T.2
  • 7
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: a geometric framework for learning from examples
    • Belkin M., Niyogi P., and Sindhwani V. Manifold regularization: a geometric framework for learning from examples. J. Mach. Learn. Res. 7 (2006) 2399-2434
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 8
    • 0344110441 scopus 로고    scopus 로고
    • Developments of the generative topographic mapping
    • Bishop C., Svensén M., and Williams C. Developments of the generative topographic mapping. Neurocomputing 21 (1998) 203-224
    • (1998) Neurocomputing , vol.21 , pp. 203-224
    • Bishop, C.1    Svensén, M.2    Williams, C.3
  • 10
    • 0002558783 scopus 로고
    • On the convergence of the EM algorithm
    • Boyles R. On the convergence of the EM algorithm. J. R. Stat. Soc. Ser. B 45 (1983) 47-50
    • (1983) J. R. Stat. Soc. Ser. B , vol.45 , pp. 47-50
    • Boyles, R.1
  • 11
    • 84937549955 scopus 로고
    • The scree test for the number of factors
    • Cattell R. The scree test for the number of factors. Multivar. Behav. Res. 1 (1966) 245-276
    • (1966) Multivar. Behav. Res. , vol.1 , pp. 245-276
    • Cattell, R.1
  • 12
    • 0041347559 scopus 로고    scopus 로고
    • M.C. Ferreira de Oliveira, H. Levkowitz, From visual data exploration to visual data mining: a survey, IEEE Trans. Visualization Comput. Graphics 9 (2003) 378-394.
    • M.C. Ferreira de Oliveira, H. Levkowitz, From visual data exploration to visual data mining: a survey, IEEE Trans. Visualization Comput. Graphics 9 (2003) 378-394.
  • 13
    • 85122490254 scopus 로고    scopus 로고
    • Topological estimation using witness complexes
    • Alexa M., and Rusinkiewicz S. (Eds)
    • de Silva V., and Carlsson G. Topological estimation using witness complexes. In: Alexa M., and Rusinkiewicz S. (Eds). Eurographics Symposium on Point-Based Graphics (2004) 157-166
    • (2004) Eurographics Symposium on Point-Based Graphics , pp. 157-166
    • de Silva, V.1    Carlsson, G.2
  • 14
    • 84899009769 scopus 로고    scopus 로고
    • Global versus local methods in nonlinear dimensionality reduction
    • Becker S.T.S., and Obermayer K. (Eds), MIT Press, Cambridge, MA
    • de Silva V., and Tenenbaum J.B. Global versus local methods in nonlinear dimensionality reduction. In: Becker S.T.S., and Obermayer K. (Eds). Advances in Neural Information Processing Systems vol. 15 (2003), MIT Press, Cambridge, MA 705-712
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 705-712
    • de Silva, V.1    Tenenbaum, J.B.2
  • 15
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • Dempster A., Laird N., and Rubin D. Maximum likelihood from incomplete data via the em algorithm. J. R. Stat. Soc. Ser. B 39 1 (1977) 1-38
    • (1977) J. R. Stat. Soc. Ser. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 16
    • 0037191702 scopus 로고    scopus 로고
    • Class visualization of high-dimensional data with applications
    • Dhillon I., Modha D., and Spangler W. Class visualization of high-dimensional data with applications. Comput. Stat. Data Anal. 41 1 (2002) 59-90
    • (2002) Comput. Stat. Data Anal. , vol.41 , Issue.1 , pp. 59-90
    • Dhillon, I.1    Modha, D.2    Spangler, W.3
  • 18
    • 0037818076 scopus 로고
    • Application of topology representing networks to the estimation of the intrinsic dimensionality of data
    • Frisone F., Firenze F., Morasso P., and Ricciardiello L. Application of topology representing networks to the estimation of the intrinsic dimensionality of data. Proceedings of the ICANN'95 vol. 1 (1995) 323-327
    • (1995) Proceedings of the ICANN'95 , vol.1 , pp. 323-327
    • Frisone, F.1    Firenze, F.2    Morasso, P.3    Ricciardiello, L.4
  • 19
    • 85199993440 scopus 로고    scopus 로고
    • Discriminant analysis by Gaussian mixtures
    • Hastie T., and Tibshirani R. Discriminant analysis by Gaussian mixtures. J. R. Stat. Soc. Ser. B 58 (1996) 158-176
    • (1996) J. R. Stat. Soc. Ser. B , vol.58 , pp. 158-176
    • Hastie, T.1    Tibshirani, R.2
  • 20
    • 0030736375 scopus 로고    scopus 로고
    • Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets
    • Hérault J., Jausions-Picaud C., and Guérin-Dugué A. Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets. IEEE Trans. Neural Networks 8 (1997) 625-634
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 625-634
    • Hérault, J.1    Jausions-Picaud, C.2    Guérin-Dugué, A.3
  • 22
    • 0002954754 scopus 로고    scopus 로고
    • Consistent estimation of the order of mixture
    • Keribin C. Consistent estimation of the order of mixture. Sankhya 62 (2000) 49-66
    • (2000) Sankhya , vol.62 , pp. 49-66
    • Keribin, C.1
  • 25
    • 0028204732 scopus 로고
    • Topology representing networks
    • Martinetz T., and Schulten K. Topology representing networks. Neural Networks 7 (1994) 507-522
    • (1994) Neural Networks , vol.7 , pp. 507-522
    • Martinetz, T.1    Schulten, K.2
  • 27
    • 0036643059 scopus 로고    scopus 로고
    • Decision region connectivity analysis: a method for analyzing high-dimensional classifiers
    • Melnik O. Decision region connectivity analysis: a method for analyzing high-dimensional classifiers. Mach. Learn. 48 1 (2002) 321-351
    • (2002) Mach. Learn. , vol.48 , Issue.1 , pp. 321-351
    • Melnik, O.1
  • 30
    • 40649098909 scopus 로고    scopus 로고
    • D. Newman, S. Hettich, C. Blake, C. Merz, UCI repository of machine learning databases, 1998.
    • D. Newman, S. Hettich, C. Blake, C. Merz, UCI repository of machine learning databases, 1998.
  • 31
    • 40649121111 scopus 로고    scopus 로고
    • P. Niyogi, S. Smale, S. Weinberger, Finding the homology of submanifolds with high confidence from random samples, Discrete Comput. Geometry, Online article available at: http://www.springerlink.com/content/g716761480425781.
    • P. Niyogi, S. Smale, S. Weinberger, Finding the homology of submanifolds with high confidence from random samples, Discrete Comput. Geometry, Online article available at: http://www.springerlink.com/content/g716761480425781.
  • 33
    • 21744460005 scopus 로고    scopus 로고
    • Practical Bayesian density estimation using mixtures of normals
    • Roeder K., and Wasserman L. Practical Bayesian density estimation using mixtures of normals. J. Am. Stat. Assoc. 92 439 (1997) 894-902
    • (1997) J. Am. Stat. Assoc. , vol.92 , Issue.439 , pp. 894-902
    • Roeder, K.1    Wasserman, L.2
  • 34
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwartz G. Estimating the dimension of a model. Ann. Stat. 6 (1978) 461-464
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwartz, G.1
  • 35
    • 33846255123 scopus 로고
    • Principal curves revisited
    • Tibshirani R. Principal curves revisited. Stat. Comput. 2 (1992) 183-190
    • (1992) Stat. Comput. , vol.2 , pp. 183-190
    • Tibshirani, R.1
  • 36
    • 38249014219 scopus 로고
    • The gamma-neighborhood graph
    • Veltkamp R. The gamma-neighborhood graph. Comput. Geometry 1 (1991) 227-246
    • (1991) Comput. Geometry , vol.1 , pp. 227-246
    • Veltkamp, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.