메뉴 건너뛰기




Volumn 3, Issue 5, 2007, Pages 1073-1085

Neural networks based system identification techniques for model based fault detection of nonlinear systems

Author keywords

Aircraft; Fault detection; Fully connected neural networks; Identification; Neural networks; Partially connected neural networks

Indexed keywords


EID: 45149091985     PISSN: 13494198     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (125)

References (28)
  • 5
    • 0024122587 scopus 로고
    • Survey of model based failure detection and isolation in complex plants
    • Gertler, J. J., Survey of model based failure detection and isolation in complex plants, IEEE Control Systems Magazine, vol.8, pp.3-11, 1988.
    • (1988) IEEE Control Systems Magazine , vol.8 , pp. 3-11
    • Gertler, J.J.1
  • 9
    • 0021468997 scopus 로고
    • Process fault diagnosis based on modeling and estimation methods-a survey
    • Iserman, R., Process fault diagnosis based on modeling and estimation methods-a survey, Automation, vol.20, pp.387-404, 1984.
    • (1984) Automation , vol.20 , pp. 387-404
    • Iserman, R.1
  • 11
    • 0025448276 scopus 로고
    • Nonlinear system identification using neural networks
    • Chen, S., S. A. Billings and P. M. Grant, Nonlinear system identification using neural networks, International Journal of Control, vol.51, no.6, pp.1191-1214, 1990.
    • (1990) International Journal of Control , vol.51 , Issue.6 , pp. 1191-1214
    • Chen, S.1    Billings, S.A.2    Grant, P.M.3
  • 13
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal spproximators
    • Hornik, K., M. Stinchkomb and M. White, Multilayer feedforward networks are universal spproximators, Neural Networks, vol.2, pp.359-366, 1989.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchkomb, M.2    White, M.3
  • 17
    • 0027068689 scopus 로고
    • Modeling, identification and stable adaptive control of continuous-time nonlinear dynamical systems using neural networks
    • Polycarpou, M. M. and P. A. Ioannou, Modeling, identification and stable adaptive control of continuous-time nonlinear dynamical systems using neural networks, Proc. of the 1992 IEEE American Control Conference, pp.36-40, 1992.
    • (1992) Proc. of the 1992 IEEE American Control Conference , pp. 36-40
    • Polycarpou, M.M.1    Ioannou, P.A.2
  • 18
    • 63649126272 scopus 로고    scopus 로고
    • Vachkov, G., Growing neural models for process identification and data analysis, International Journal of Innovative Computing, Information and Control, 2, no.l, pp.101-123, 2006.
    • Vachkov, G., Growing neural models for process identification and data analysis, International Journal of Innovative Computing, Information and Control, vol.2, no.l, pp.101-123, 2006.
  • 19
    • 63649083662 scopus 로고    scopus 로고
    • Linden, V., D., CA.A.M., DASMAT-Delft University Aircraft Simulation Model and Analysis Tool, A Matlab/Simulink Environment for Flight Dynamics and Control Analysis, Report LR-781, Delft University of Technology, Delft, 1996.
    • Linden, V., D., CA.A.M., DASMAT-Delft University Aircraft Simulation Model and Analysis Tool, A Matlab/Simulink Environment for Flight Dynamics and Control Analysis, Report LR-781, Delft University of Technology, Delft, 1996.
  • 20
    • 33646771023 scopus 로고    scopus 로고
    • On realizability of neural networks-based-input-output models in the classical state-step form
    • Kotta, U., F. N. Chowdhury and S. Nomma, On realizability of neural networks-based-input-output models in the classical state-step form, Automatica, vol.42, pp.1211-1216, 2006.
    • (2006) Automatica , vol.42 , pp. 1211-1216
    • Kotta, U.1    Chowdhury, F.N.2    Nomma, S.3
  • 22
    • 63549111632 scopus 로고    scopus 로고
    • GMDH-type neural network algorithm with a feedback loop identifying sigmoid function neural network
    • Revised
    • Kondo, T. and J. Ueno, Revised GMDH-type neural network algorithm with a feedback loop identifying sigmoid function neural network , International Journal of Innovative Computing, Information and Control, vol.2, no.5, pp.985-996, 2006.
    • (2006) International Journal of Innovative Computing, Information and Control , vol.2 , Issue.5 , pp. 985-996
    • Kondo, T.1    Ueno, J.2
  • 25
    • 0026626377 scopus 로고
    • Comparison of four neural net learning methods for dynamic system identification
    • Zhao, S., H. T. Su and T. J. McAvoy, Comparison of four neural net learning methods for dynamic system identification, IEEE Trans. on Neural Networks, vol.3, no.l, pp.122-130, 1992.
    • (1992) IEEE Trans. on Neural Networks , vol.3 , Issue.L , pp. 122-130
    • Zhao, S.1    Su, H.T.2    McAvoy, T.J.3
  • 26
    • 0031240593 scopus 로고    scopus 로고
    • A survey of partially connected neural networks
    • Elizondo, D. and E. Fiesler, A survey of partially connected neural networks, International Journal of Neural Systems, vol.8, no.5-6, pp.535-558, 1997.
    • (1997) International Journal of Neural Systems , vol.8 , Issue.5-6 , pp. 535-558
    • Elizondo, D.1    Fiesler, E.2
  • 27
    • 13844298048 scopus 로고    scopus 로고
    • Partially connected feedforward neural networks structured by input types
    • Kang, S. and C. Isik, Partially connected feedforward neural networks structured by input types, IEEE Trans. Neural Networks, vol.16, no.l, pp.175-184, 2005.
    • (2005) IEEE Trans. Neural Networks , vol.16 , Issue.L , pp. 175-184
    • Kang, S.1    Isik, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.