-
2
-
-
34249753618
-
Support vector networks
-
C. Cortes and V. Vapnik, "Support vector networks," Mach. Learn. vol. 20, pp. 273-279, 1995.
-
(1995)
Mach. Learn
, vol.20
, pp. 273-279
-
-
Cortes, C.1
Vapnik, V.2
-
5
-
-
0032166068
-
Structural risk minimization over data-dependent hierarchies
-
Sep
-
J. Shawe-Taylor and P. L. Bartlett, "Structural risk minimization over data-dependent hierarchies," IEEE Trans. Inf. Theory, vol. 44, no. 5, pp. 1926-1940, Sep. 1998.
-
(1998)
IEEE Trans. Inf. Theory
, vol.44
, Issue.5
, pp. 1926-1940
-
-
Shawe-Taylor, J.1
Bartlett, P.L.2
-
6
-
-
0024732792
-
Connections learning procedures
-
G. E. Hinton, "Connections learning procedures," Artif. Intell., vol. 40, pp. 185-234, 1989.
-
(1989)
Artif. Intell
, vol.40
, pp. 185-234
-
-
Hinton, G.E.1
-
7
-
-
0000043665
-
On solving ill-posed problem and the method of regularization
-
A. N. Tikhonov, "On solving ill-posed problem and the method of regularization," Doklady Akademii Nauk USSR, vol. 153, pp. 501-504, 1963.
-
(1963)
Doklady Akademii Nauk USSR
, vol.153
, pp. 501-504
-
-
Tikhonov, A.N.1
-
10
-
-
0034331142
-
Improving generalization of MLPs with multi-objective optimization
-
R. A. Teixiera, A. P. Braga, R. H. C. Takahashi, and R. R. Saldanha, "Improving generalization of MLPs with multi-objective optimization," Neurocomputing, vol. 35, no. 1-4, pp. 189-194, 2000.
-
(2000)
Neurocomputing
, vol.35
, Issue.1-4
, pp. 189-194
-
-
Teixiera, R.A.1
Braga, A.P.2
Takahashi, R.H.C.3
Saldanha, R.R.4
-
11
-
-
0037379787
-
Training neural networks with a multi-objective sliding mode control algorithm
-
M. A. Costa, A. P. Braga, B. R. Menezes, R. A. Teixiera, and G. G. Parma, "Training neural networks with a multi-objective sliding mode control algorithm," Neurocomputing, vol. 51, pp. 467-473, 2003.
-
(2003)
Neurocomputing
, vol.51
, pp. 467-473
-
-
Costa, M.A.1
Braga, A.P.2
Menezes, B.R.3
Teixiera, R.A.4
Parma, G.G.5
-
12
-
-
0344394516
-
Parallel layer perceptron
-
Oct
-
W. M. Caminhas, D. A. G. Vieira, and J. A. Vasconcelos, "Parallel layer perceptron," Neurocomputing, vol. 55, no. 3-4, pp. 771-778, Oct. 2003.
-
(2003)
Neurocomputing
, vol.55
, Issue.3-4
, pp. 771-778
-
-
Caminhas, W.M.1
Vieira, D.A.G.2
Vasconcelos, J.A.3
-
13
-
-
34249073096
-
Controlling the parallel layer perceptron complexity using a multiobjective learning algorithm
-
May, DOI: 10.1007/s00521-006-0052-z
-
D. A. G. Vieira, W. M. Caminhas, and J. A. Vasconcelos, "Controlling the parallel layer perceptron complexity using a multiobjective learning algorithm," Neural Comput. Appl., vol. 16, no. 4-5, May 2006, DOI: 10.1007/s00521-006-0052-z.
-
(2006)
Neural Comput. Appl
, vol.16
, Issue.4-5
-
-
Vieira, D.A.G.1
Caminhas, W.M.2
Vasconcelos, J.A.3
-
14
-
-
0001219859
-
Regularization theory and neural networks architectures
-
F. Girosi, M. Jones, and T. Poggio, "Regularization theory and neural networks architectures," Neural Comput., vol. 7, pp. 219-269, 1995.
-
(1995)
Neural Comput
, vol.7
, pp. 219-269
-
-
Girosi, F.1
Jones, M.2
Poggio, T.3
-
15
-
-
0032594954
-
Input space vs. feature space in Kernel-based methods
-
Sep
-
B. Schölkopf, S. Mika, C. J. C. Burges, P. Knirsch, K.-R. Müller, G. Rätsch, and A. J. Smola, "Input space vs. feature space in Kernel-based methods," IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 1000-1017, Sep. 1999.
-
(1999)
IEEE Trans. Neural Netw
, vol.10
, Issue.5
, pp. 1000-1017
-
-
Schölkopf, B.1
Mika, S.2
Burges, C.J.C.3
Knirsch, P.4
Müller, K.-R.5
Rätsch, G.6
Smola, A.J.7
-
17
-
-
0032028728
-
The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
-
Mar
-
P. L. Bartlett, "The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network," IEEE Trans. Inf. Theory, vol. 44, no. 2, pp. 525-536, Mar. 1998.
-
(1998)
IEEE Trans. Inf. Theory
, vol.44
, Issue.2
, pp. 525-536
-
-
Bartlett, P.L.1
-
18
-
-
0040864988
-
Principles of structural risk minimization for learning theory
-
Cambridge, MA: MIT Press
-
V. N. Vapnik, "Principles of structural risk minimization for learning theory," in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 1992, vol. 4, pp. 831-838.
-
(1992)
Advances in Neural Information Processing Systems
, vol.4
, pp. 831-838
-
-
Vapnik, V.N.1
-
19
-
-
49649124543
-
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Internal Representations by Error Propagation, ser. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, D. E. Rumelhart and J. L. McClelland, Eds. Cambridge, MA: Bradford Books (MIT Press), 1986, 1.
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Internal Representations by Error Propagation, ser. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, D. E. Rumelhart and J. L. McClelland, Eds. Cambridge, MA: Bradford Books (MIT Press), 1986, vol. 1.
-
-
-
-
20
-
-
0024861871
-
Approximation by superpositions of a Sigmoid function
-
G. Cybenko, "Approximation by superpositions of a Sigmoid function," Math. Control Signals Syst., vol. 2, pp. 303-314, 1989.
-
(1989)
Math. Control Signals Syst
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
21
-
-
0024866495
-
On the approximate realization of continuous mappings by neural networks
-
K. Funahashi, "On the approximate realization of continuous mappings by neural networks," Neural Netw. Signals Syst., vol. 2, pp. 183-192, 1989.
-
(1989)
Neural Netw. Signals Syst
, vol.2
, pp. 183-192
-
-
Funahashi, K.1
-
22
-
-
0003000735
-
Fast-learning variations on back-propagation: An empirical study
-
D. Touretzky, G. Hinton, and T. Senjnowski, Eds, San Mateo, CA
-
S. E. Fahlman, "Fast-learning variations on back-propagation: An empirical study," in Proc. Connectionist Models Summer School, D. Touretzky, G. Hinton, and T. Senjnowski, Eds., San Mateo, CA, 1988, pp. 38-51.
-
(1988)
Proc. Connectionist Models Summer School
, pp. 38-51
-
-
Fahlman, S.E.1
-
23
-
-
0028543366
-
Training feedforward network with the Marquardt algorithm
-
Nov
-
M. T. Hangan and M. B. Menjah, "Training feedforward network with the Marquardt algorithm," IEEE Trans. Neural Netw., vol. 5, no. 6, pp. 989-993, Nov. 1994.
-
(1994)
IEEE Trans. Neural Netw
, vol.5
, Issue.6
, pp. 989-993
-
-
Hangan, M.T.1
Menjah, M.B.2
-
24
-
-
84898957627
-
For valid generalization the size of the weights is more important than the size of the network
-
Cambridge, MA: MIT Press
-
P. L. Bartlett, "For valid generalization the size of the weights is more important than the size of the network," in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 1997, vol. 9, pp. 134-141.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 134-141
-
-
Bartlett, P.L.1
-
25
-
-
34250488412
-
Relationship of several variational methods for approximate solutions of ill-posed problems
-
V. V. Vasin, "Relationship of several variational methods for approximate solutions of ill-posed problems," Math Notes, vol. 7, pp. 161-166, 1970.
-
(1970)
Math Notes
, vol.7
, pp. 161-166
-
-
Vasin, V.V.1
-
26
-
-
0000621802
-
Multivariable functional interpolation and adaptive networks
-
D. S. Broomhead and D. Lowe, "Multivariable functional interpolation and adaptive networks," Complex Syst., vol. 2, pp. 321-355, 1989.
-
(1989)
Complex Syst
, vol.2
, pp. 321-355
-
-
Broomhead, D.S.1
Lowe, D.2
-
27
-
-
0000106040
-
Universal approximation using radial-basis-function networks
-
J. Park and I. W. Sandberg, "Universal approximation using radial-basis-function networks," Neural Comput., vol. 3, pp. 246-257, 1991.
-
(1991)
Neural Comput
, vol.3
, pp. 246-257
-
-
Park, J.1
Sandberg, I.W.2
-
28
-
-
0027599793
-
Universal approximation bounds for superpositions of a sigmoidal function
-
May
-
A. R. Barron, "Universal approximation bounds for superpositions of a sigmoidal function," IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 930-945, May 1993.
-
(1993)
IEEE Trans. Inf. Theory
, vol.39
, Issue.3
, pp. 930-945
-
-
Barron, A.R.1
-
29
-
-
0036530235
-
The equivalence of support vector machine and regularization neural networks
-
P. Andras, "The equivalence of support vector machine and regularization neural networks," Neural Process. Lett., vol. 15, no. 2, pp. 97-104, 2002.
-
(2002)
Neural Process. Lett
, vol.15
, Issue.2
, pp. 97-104
-
-
Andras, P.1
-
30
-
-
34347245533
-
Localized generalization error model and its application to architecture selection for radial basis function neural network
-
Sep
-
D. S. Yeung, W. W. Y. Ng, D.Wang, E. C. C. Tsang, and X.-Z. Wang, "Localized generalization error model and its application to architecture selection for radial basis function neural network," IEEE Trans. Neural Netw., vol. 18, no. 5, pp. 1294-1305, Sep. 2007.
-
(2007)
IEEE Trans. Neural Netw
, vol.18
, Issue.5
, pp. 1294-1305
-
-
Yeung, D.S.1
Ng, W.W.Y.2
Wang, D.3
Tsang, E.C.C.4
Wang, X.-Z.5
-
31
-
-
84899007626
-
Smoothing regularizers for projective basis function networks
-
M. C. Mozer, M. I. Jordan, and T. Petsche, Eds. Cambridge, MA: MIT Press
-
J. E. Moody and T. S. Rögnvaldsson, "Smoothing regularizers for projective basis function networks," in Advances in Neural Information Processing Systems, M. C. Mozer, M. I. Jordan, and T. Petsche, Eds. Cambridge, MA: MIT Press, 1997, vol. 9, pp. 585-605.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 585-605
-
-
Moody, J.E.1
Rögnvaldsson, T.S.2
-
32
-
-
0026953305
-
Improving generalization performance using double back-propagation
-
Nov
-
H. Drucker and Y. LeCun, "Improving generalization performance using double back-propagation," IEEE Trans. Neural Netw., vol. 3, no. 6, pp. 991-997, Nov. 1992.
-
(1992)
IEEE Trans. Neural Netw
, vol.3
, Issue.6
, pp. 991-997
-
-
Drucker, H.1
LeCun, Y.2
-
33
-
-
0027659357
-
Curvature driven smoothing: A learning algorithm for feedforward networks
-
Sep
-
C. M. Bishop, "Curvature driven smoothing: A learning algorithm for feedforward networks," IEEE Trans. Neural Netw., vol. 4, no. 5, pp. 882-884, Sep. 1993.
-
(1993)
IEEE Trans. Neural Netw
, vol.4
, Issue.5
, pp. 882-884
-
-
Bishop, C.M.1
-
34
-
-
2342479956
-
Extracting sensitivity information of electromagnetic devices models from a modified ANFIS topology
-
Mar
-
D. A. G. Vieira, W. M. Caminhas, and J. A. Vasconcelos, "Extracting sensitivity information of electromagnetic devices models from a modified ANFIS topology," IEEE Trans. Magn., vol. 40, no. 2, pp. 1180-1183, Mar. 2004.
-
(2004)
IEEE Trans. Magn
, vol.40
, Issue.2
, pp. 1180-1183
-
-
Vieira, D.A.G.1
Caminhas, W.M.2
Vasconcelos, J.A.3
-
35
-
-
0003994186
-
-
Matlab Toolboxes, Natick, MA [Online, Available
-
Matlab Toolboxes. The Mathworks, Natick, MA [Online]. Available: www.mathworks.com
-
The Mathworks
-
-
-
36
-
-
34248670883
-
Convex approach to validation-based learning of the regularization constant
-
May
-
K. Pelckmans, J. A. K. Suykens, and B. De Moor, "Convex approach to validation-based learning of the regularization constant," IEEE Trans. Neural Netw., vol. 18, no. 3, pp. 917-920, May 2007.
-
(2007)
IEEE Trans. Neural Netw
, vol.18
, Issue.3
, pp. 917-920
-
-
Pelckmans, K.1
Suykens, J.A.K.2
De Moor, B.3
-
37
-
-
0000475482
-
A universal nonlinear filter, predictor and simulator which optimizes itself by a learning process
-
D. Gabor, W. Wildes, and R. Woodcock, "A universal nonlinear filter, predictor and simulator which optimizes itself by a learning process," Proc. Inst. Electr. Eng., vol. 108B, pp. 422-438, 1961.
-
(1961)
Proc. Inst. Electr. Eng
, vol.108 B
, pp. 422-438
-
-
Gabor, D.1
Wildes, W.2
Woodcock, R.3
-
38
-
-
39549089137
-
A generalized least absolute deviation method for parameter estimation of autoregressive signals
-
Jan
-
Y. Xia and M. S. Kamel, "A generalized least absolute deviation method for parameter estimation of autoregressive signals," IEEE Trans. Neural Netw., vol. 19, no. 1, pp. 107-118, Jan. 2008.
-
(2008)
IEEE Trans. Neural Netw
, vol.19
, Issue.1
, pp. 107-118
-
-
Xia, Y.1
Kamel, M.S.2
-
39
-
-
84898957872
-
Improving the accuracy and speed of support vector machines
-
M. C. Mozer, M. I. Jordan, and T. Petsche, Eds. Cambridge, MA: MIT Press
-
C. J. C. Burges and B. Schölkopf, "Improving the accuracy and speed of support vector machines," in Advances in Neural Information Processing Systems, M. C. Mozer, M. I. Jordan, and T. Petsche, Eds. Cambridge, MA: MIT Press, 1997, vol. 9, p. 375.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 375
-
-
Burges, C.J.C.1
Schölkopf, B.2
-
40
-
-
49649124782
-
IDA Benchmark Repository Used in Several Boosting, KFD and SVM Papers,
-
IDA, Tech. Rep, Online, Available
-
IDA, "IDA Benchmark Repository Used in Several Boosting, KFD and SVM Papers," Tech. Rep. [Online]. Available: http://ida.first.gmd.de/ raetsch/data/benchmarks.htm
-
-
-
-
41
-
-
0035272287
-
An introduction to Kernel-based learning algorithms
-
Mar
-
K. Muller, S. Mika, G. Ratsh, K. Tsuda, and B. Scholkopf, "An introduction to Kernel-based learning algorithms," IEEE Trans. Neural Netw., vol. 12, no. 2, pp. 181-201, Mar. 2001.
-
(2001)
IEEE Trans. Neural Netw
, vol.12
, Issue.2
, pp. 181-201
-
-
Muller, K.1
Mika, S.2
Ratsh, G.3
Tsuda, K.4
Scholkopf, B.5
-
42
-
-
0005035923
-
Adaptive margin support vector machines
-
A. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans, Eds. Cambridge, MA: MIT Press
-
J. Weston and R. Herbrich, "Adaptive margin support vector machines," in Advances in Large Margin Classifiers, A. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans, Eds. Cambridge, MA: MIT Press, 2000, pp. 281-295.
-
(2000)
Advances in Large Margin Classifiers
, pp. 281-295
-
-
Weston, J.1
Herbrich, R.2
-
43
-
-
0141639615
-
Efficient leave-one-out cross-validation of kernel Fisher discriminant classifiers
-
November
-
G. C. Cawley and N. L. C. Talbot, "Efficient leave-one-out cross-validation of kernel Fisher discriminant classifiers," Pattern Recognit., vol. 36, pp. 2585-2592, November 2003.
-
(2003)
Pattern Recognit
, vol.36
, pp. 2585-2592
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
44
-
-
1242263806
-
The generalized LASSO
-
Jan
-
V. Roth, "The generalized LASSO," IEEE Trans. Neural Netw., vol. 15, no. 1, pp. 16-28, Jan. 2004.
-
(2004)
IEEE Trans. Neural Netw
, vol.15
, Issue.1
, pp. 16-28
-
-
Roth, V.1
-
45
-
-
15844420667
-
The evidence framework applied to sparse kernel logistic regression
-
March
-
G. C. Cawley and N. L. C. Talbot, "The evidence framework applied to sparse kernel logistic regression," Neurocomputing, vol. 65, pp. 119-135, March 2005.
-
(2005)
Neurocomputing
, vol.65
, pp. 119-135
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
46
-
-
28244467848
-
Posterior probability support vector machines for unbalanced data
-
Nov
-
Q. Tao, G.-W. Wu, Fei-Yue, and J. Wang, "Posterior probability support vector machines for unbalanced data," IEEE Trans. Neural Netw., vol. 16, no. 6, pp. 1561-1573, Nov. 2005.
-
(2005)
IEEE Trans. Neural Netw
, vol.16
, Issue.6
, pp. 1561-1573
-
-
Tao, Q.1
Wu, G.-W.2
Yue, F.3
Wang, J.4
-
47
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
J. Demsar, "Statistical comparisons of classifiers over multiple data sets," J. Mach. Learn. Res., vol. 7, pp. 1-30, 2006.
-
(2006)
J. Mach. Learn. Res
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
48
-
-
49649104891
-
Is the maximal margin hyperplane special in a feature space? Hewlett-Packards Labs, Palo Alto, CA
-
Tech. Rep, Apr
-
B. Zhang, Is the maximal margin hyperplane special in a feature space? Hewlett-Packards Labs, Palo Alto, CA, Tech. Rep., Apr. 2001.
-
(2001)
-
-
Zhang, B.1
-
49
-
-
85118436573
-
Extracting support data for a given task
-
B. Sholkopf, C. Burges, and V. Vapnik, "Extracting support data for a given task," in Proc. Ist Int. Conf. Knowl. Disc. Data Mining, 1995, pp. 252-257.
-
(1995)
Proc. Ist Int. Conf. Knowl. Disc. Data Mining
, pp. 252-257
-
-
Sholkopf, B.1
Burges, C.2
Vapnik, V.3
-
50
-
-
0032786569
-
Improving support vector machine classifier by modifying kernel functions
-
S. Amari and S. Wu, "Improving support vector machine classifier by modifying kernel functions," Neural Netw., vol. 12, pp. 783-789, 1999.
-
(1999)
Neural Netw
, vol.12
, pp. 783-789
-
-
Amari, S.1
Wu, S.2
-
51
-
-
0037382208
-
Evaluation of simple performance measures for tuning SVM hyperparameters
-
K. Duan, S. S. Keerthi, and A. N. Poo, "Evaluation of simple performance measures for tuning SVM hyperparameters," Neurocomputing vol. 51, pp. 41-59, 2003.
-
(2003)
Neurocomputing
, vol.51
, pp. 41-59
-
-
Duan, K.1
Keerthi, S.S.2
Poo, A.N.3
-
52
-
-
2142643698
-
A support vector machine with a hybrid kernel and minimal Vapnik-Chervonenks dimension
-
Apr
-
Y. Tan and J. Wuang, "A support vector machine with a hybrid kernel and minimal Vapnik-Chervonenks dimension," IEEE Trans. Knowl. Data Eng. vol. 16, no. 4, pp. 385-395, Apr. 2004.
-
(2004)
IEEE Trans. Knowl. Data Eng
, vol.16
, Issue.4
, pp. 385-395
-
-
Tan, Y.1
Wuang, J.2
-
53
-
-
0141794592
-
A role on total margin support vector machines
-
M. Yoon, Y. Yun, and H. Nakayama, "A role on total margin support vector machines," in Proc. Int. Joint Conf. Neural Netw., 2003, pp. 2049-2053.
-
(2003)
Proc. Int. Joint Conf. Neural Netw
, pp. 2049-2053
-
-
Yoon, M.1
Yun, Y.2
Nakayama, H.3
-
54
-
-
0034861805
-
Kernel-based methods and function approximation
-
Washington, DC
-
G. Baudat and F. Anouar, "Kernel-based methods and function approximation," in Proc. Int. Joint Conf. Neural Netw., Washington, DC, 2001, pp. 1244-1249.
-
(2001)
Proc. Int. Joint Conf. Neural Netw
, pp. 1244-1249
-
-
Baudat, G.1
Anouar, F.2
-
55
-
-
17744373086
-
Evolutionary radial basis functions for credit assessment
-
E. Lacerda, A. Carvalho, A. P. Braga, and T. B. Ludermir, "Evolutionary radial basis functions for credit assessment," Appl. Intell., vol. 22, no. 3, pp. 167-182, 2005.
-
(2005)
Appl. Intell
, vol.22
, Issue.3
, pp. 167-182
-
-
Lacerda, E.1
Carvalho, A.2
Braga, A.P.3
Ludermir, T.B.4
-
56
-
-
0020102027
-
Least square quantization in PCM
-
Mar
-
S. P. Llyod, "Least square quantization in PCM," IEEE Trans. Inf. Theory, vol. IT-28, no. 2, pp. 129-137, Mar. 1982.
-
(1982)
IEEE Trans. Inf. Theory
, vol.IT-28
, Issue.2
, pp. 129-137
-
-
Llyod, S.P.1
-
59
-
-
0024475950
-
Multidimensional data clustering utilizing hybrid strategies
-
M. A. Ismail and M. S. Kamel, "Multidimensional data clustering utilizing hybrid strategies," Pattern Recognit., vol. 22, pp. 75-89, 1989.
-
(1989)
Pattern Recognit
, vol.22
, pp. 75-89
-
-
Ismail, M.A.1
Kamel, M.S.2
-
60
-
-
0001457509
-
Some methods for classification and analysis of multivariate observations
-
J. MacQueen, "Some methods for classification and analysis of multivariate observations," in Proc. 5th Berkeley Symp. Math, 1967, vol. 1, pp. 281-297.
-
(1967)
Proc. 5th Berkeley Symp. Math
, vol.1
, pp. 281-297
-
-
MacQueen, J.1
-
61
-
-
0029196051
-
Optimal adaptive k-means algorithm with dynamic adjustment of learning rate
-
Jan
-
C. Chinrungrueng and C. H. Séquin, "Optimal adaptive k-means algorithm with dynamic adjustment of learning rate," IEEE Trans. Neural Netw., vol. 6, no. 1, pp. 157-169, Jan. 1995.
-
(1995)
IEEE Trans. Neural Netw
, vol.6
, Issue.1
, pp. 157-169
-
-
Chinrungrueng, C.1
Séquin, C.H.2
-
62
-
-
0000646059
-
Learning internal representations by error propagation
-
Cambridge, MA: MIT Press, ch. 8, pp
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning internal representations by error propagation," in Computational Models of Cognition and Perception. Cambridge, MA: MIT Press, 1986, vol. 1, ch. 8, pp. 319-362.
-
(1986)
Computational Models of Cognition and Perception
, vol.1
, pp. 319-362
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
63
-
-
0000155950
-
The cascade-correlation learning architecture
-
D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann
-
S. E. Fahlman and C. Lebiere, "The cascade-correlation learning architecture," in Advances in Neural Information Processing Systems D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990, vol. 2, pp. 524-532.
-
(1990)
Advances in Neural Information Processing Systems
, vol.2
, pp. 524-532
-
-
Fahlman, S.E.1
Lebiere, C.2
-
64
-
-
0012405584
-
-
Dept. Comput. Sci, Iowa State Univ, Ames, IA, Tech. Rep
-
R. Parekh, J. Yang, and V. Honavar, "Constructive neural network learning algorithms for multi-category real-value pattern classification," Dept. Comput. Sci., Iowa State Univ., Ames, IA, Tech. Rep., 1987.
-
(1987)
Constructive neural network learning algorithms for multi-category real-value pattern classification
-
-
Parekh, R.1
Yang, J.2
Honavar, V.3
-
66
-
-
0027601884
-
ANFIS: Adaptive-network-based fuzzy inference systems
-
May
-
J. S. R. Jang, "ANFIS: Adaptive-network-based fuzzy inference systems," IEEE Trans. Syst. Man Cybern., vol. 23, no. 3, pp. 665-685, May 1993.
-
(1993)
IEEE Trans. Syst. Man Cybern
, vol.23
, Issue.3
, pp. 665-685
-
-
Jang, J.S.R.1
-
67
-
-
0000257826
-
A neo fuzzy neuron and it applications to system identification and predictions to system behavior
-
Japan
-
T. Yamakwa, E. Uchino, T. Miki, and Kusanagi, "A neo fuzzy neuron and it applications to system identification and predictions to system behavior," in Proc. 2nd Int. Conf. Fuzzy Logic Neural Netw., Japan, 1992, pp. 477-483.
-
(1992)
Proc. 2nd Int. Conf. Fuzzy Logic Neural Netw
, pp. 477-483
-
-
Yamakwa, T.1
Uchino, E.2
Miki, T.3
Kusanagi4
-
68
-
-
0001942829
-
Neural networks and the bias-variance dilemma
-
S. Geman, E. Bienenstock, and R. Doursat, "Neural networks and the bias-variance dilemma," Neural Comput., vol. 4, no. 1, pp. 1-58, 1992.
-
(1992)
Neural Comput
, vol.4
, Issue.1
, pp. 1-58
-
-
Geman, S.1
Bienenstock, E.2
Doursat, R.3
|