-
1
-
-
7444220645
-
Electric field in atomically thin carbon films
-
DOI 10.1126/science.1102896
-
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, vol. 306, no. 5696, pp. 666-669, Oct. 2004. (Pubitemid 39440910)
-
(2004)
Science
, vol.306
, Issue.5696
, pp. 666-669
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.V.3
Jiang, D.4
Zhang, Y.5
Dubonos, S.V.6
Grigorieva, I.V.7
Firsov, A.A.8
-
2
-
-
27744475163
-
Experimental observation of the quantum Hall effect and Berry's phase in graphene
-
DOI 10.1038/nature04235, PII N04235
-
Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, "Experimental observation of the quantum Hall effect and Berry's phase in graphene," Nature, vol. 438, no. 7065, pp. 201-204, Nov. 2005. (Pubitemid 41599868)
-
(2005)
Nature
, vol.438
, Issue.7065
, pp. 201-204
-
-
Zhang, Y.1
Tan, Y.-W.2
Stormer, H.L.3
Kim, P.4
-
3
-
-
33744469329
-
Electronic confinement and coherence in patterned epitaxial graphene
-
DOI 10.1126/science.1125925
-
C. Berger, Z. M. Song, X. B. Li, X. B. Li, X. S. Wu, N. Brown, C. Naud, D.Mayo, T. B. Li, J. Hass, A. N.Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, "Electronic confinement and coherence in patterned epitaxial graphene," Science, vol. 312, no. 5777, pp. 1191-1196, May 2006. (Pubitemid 43801140)
-
(2006)
Science
, vol.312
, Issue.5777
, pp. 1191-1196
-
-
Berger, C.1
Song, Z.2
Li, X.3
Wu, X.4
Brown, N.5
Naud, C.6
Mayou, D.7
Li, T.8
Hass, J.9
Marchenkov, A.N.10
Conrad, E.H.11
First, P.N.12
De Heer, W.A.13
-
4
-
-
33646685492
-
Analysis of graphene nanoribbons as a channel material for field-effect transistors
-
Apr
-
B. Obradovic, R. Kotlyar, F. Heinz, P. Matagne, T. Rakshit, M. D. Gilies, M. A. Stettler, and D. E. Nikonov, "Analysis of graphene nanoribbons as a channel material for field-effect transistors," Appl. Phys. Lett., vol. 88, no. 14, pp. 142 102-142 104, Apr. 2006.
-
(2006)
Appl. Phys. Lett.
, vol.88
, Issue.14
, pp. 142102-142104
-
-
Obradovic, B.1
Kotlyar, R.2
Heinz, F.3
Matagne, P.4
Rakshit, T.5
Gilies, M.D.6
Stettler, M.A.7
Nikonov, D.E.8
-
5
-
-
34547334459
-
Energy band-gap engineering of graphene nanoribbons
-
May
-
M. Y. Han, B. Ozyilmaz, Y. B. Zhang, and P. Kim, "Energy band-gap engineering of graphene nanoribbons," Phys. Rev. Lett., vol. 98, no. 20, pp. 206 805-206 808, May 2007.
-
(2007)
Phys. Rev. Lett.
, vol.98
, Issue.20
, pp. 206805-206808
-
-
Han, M.Y.1
Ozyilmaz, B.2
Zhang, Y.B.3
Kim, P.4
-
6
-
-
77954071959
-
Modeling and simulation of uniaxial strain effects in armchair graphene nanoribbon tunneling field effect transistors
-
Jun.
-
J. H. Kang, Y. He, J. Y. Zhang, X. X. Yu, X. M. Guan, and Z. P. Yu, "Modeling and simulation of uniaxial strain effects in armchair graphene nanoribbon tunneling field effect transistors," Appl. Phys. Lett., vol. 96, no. 25, pp. 252 105-252 107, Jun. 2010.
-
(2010)
Appl. Phys. Lett.
, vol.96
, Issue.25
, pp. 252105-252107
-
-
Kang, J.H.1
He, Y.2
Zhang, J.Y.3
Yu, X.X.4
Guan, X.M.5
Yu, Z.P.6
-
7
-
-
34147162745
-
Performance projections for ballistic graphene nanoribbon field-effect transistors
-
DOI 10.1109/TED.2007.891872
-
G. C. Liang, N. Neophytos, D. Nikonov, and M. Lundstrom, "Performance projections for ballistic graphene nanoribbon field-effect transistors," IEEE Trans. Electron Devices, vol. 54, no. 4, pp. 677-682, Apr. 2007. (Pubitemid 46563359)
-
(2007)
IEEE Transactions on Electron Devices
, vol.54
, Issue.4
, pp. 677-682
-
-
Liang, G.1
Neophytou, N.2
Nikonov, D.E.3
Lundstrom, M.S.4
-
8
-
-
47249108870
-
Simulation investigation of double-gate CNR-MOSFETs with a fully self-consistent NEGF and TB method
-
X. Guan, M. Zhang, Q. Liu, and Z. Yu, "Simulation investigation of double-gate CNR-MOSFETs with a fully self-consistent NEGF and TB method," in IEDM Tech. Dig., 2007, pp. 761-764.
-
(2007)
IEDM Tech. Dig.
, pp. 761-764
-
-
Guan, X.1
Zhang, M.2
Liu, Q.3
Yu, Z.4
-
9
-
-
60449083167
-
Modeling edge effects in graphene nanoribbon fieldeffect transistors with real and mode space methods
-
Feb
-
P. Zhao and J. Guo, "Modeling edge effects in graphene nanoribbon fieldeffect transistors with real and mode space methods," J. Appl. Phys., vol. 105, no. 3, pp. 034503-1-034503-7, Feb. 2009.
-
(2009)
J. Appl. Phys.
, vol.105
, Issue.3
, pp. 034503-034501
-
-
Zhao, P.1
Guo, J.2
-
10
-
-
62849110776
-
Tight-binding and effective mass modeling of armchair graphene nanoribbon FETs
-
Apr
-
R. Grassi, S. Poli, E. Gnani, A. Gnudi, S. Reggiani, and G. Baccarani, "Tight-binding and effective mass modeling of armchair graphene nanoribbon FETs," Solid State Electron., vol. 53, no. 4, pp. 462-467, Apr. 2009.
-
(2009)
Solid State Electron.
, vol.53
, Issue.4
, pp. 462-467
-
-
Grassi, R.1
Poli, S.2
Gnani, E.3
Gnudi, A.4
Reggiani, S.5
Baccarani, G.6
-
11
-
-
45849156124
-
Calculations and applications of the complex band structure for carbon nanotube field-effect transistors
-
Jul
-
T. S. Xia, L. F. Register, and S. K. Banerjee, "Calculations and applications of the complex band structure for carbon nanotube field-effect transistors," Phys. Rev. B, vol. 70, no. 4, pp. 045322-045329, Jul. 2004.
-
(2004)
Phys. Rev. B
, vol.70
, Issue.4
, pp. 045322-045329
-
-
Xia, T.S.1
Register, L.F.2
Banerjee, S.K.3
-
12
-
-
1142268099
-
Quantum transport in carbon nanotube transistors: Complex band structure effects
-
Feb
-
T. S. Xia, L. F. Register, and S. K. Banerjee, "Quantum transport in carbon nanotube transistors: Complex band structure effects," J. Appl. Phys., vol. 95, no. 3, pp. 1597-1599, Feb. 2004.
-
(2004)
J. Appl. Phys.
, vol.95
, Issue.3
, pp. 1597-1599
-
-
Xia, T.S.1
Register, L.F.2
Banerjee, S.K.3
-
13
-
-
78650029419
-
The complex band structure for armchair graphene nanoribbons
-
Nov.
-
L. J. Zhang and T. S. Xia, "The complex band structure for armchair graphene nanoribbons," Chin. Phys. B, vol. 19, no. 11, pp. 117 105-117 111, Nov. 2010.
-
(2010)
Chin. Phys. B
, vol.19
, Issue.11
, pp. 117105-117111
-
-
Zhang, L.J.1
Xia, T.S.2
-
14
-
-
41449108135
-
Tight-binding energy dispersions of armchair-edge graphene nanostrips
-
Mar
-
D. Gunlycke and C. T. White, "Tight-binding energy dispersions of armchair-edge graphene nanostrips," Phys. Rev. B, vol. 77, no. 11, pp. 115 116-115 121, Mar. 2008.
-
(2008)
Phys. Rev. B
, vol.77
, Issue.11
, pp. 115116-115121
-
-
Gunlycke, D.1
White, C.T.2
-
15
-
-
55649110343
-
Carrier density and effective mass calculations for carbon nanotubes
-
Aug
-
J. M. Marulanda and A. Srivastava, "Carrier density and effective mass calculations for carbon nanotubes," Phys. Stat. Sol. B, vol. 245, no. 11, pp. 2558-2562, Aug. 2008.
-
(2008)
Phys. Stat. Sol. B
, vol.245
, Issue.11
, pp. 2558-2562
-
-
Marulanda, J.M.1
Srivastava, A.2
-
16
-
-
68249149313
-
Modeling charge transport in graphene nanoribbons and carbon nanotubes using a Schrödinger-Poisson solver
-
Jul
-
D. I. Odili, Y. Wu, P. A. Childs, and D. C. Herbert, "Modeling charge transport in graphene nanoribbons and carbon nanotubes using a Schrödinger-Poisson solver," J. Appl. Phys., vol. 106, no. 2, pp. 024509-1-024509-5, Jul. 2009.
-
(2009)
J. Appl. Phys.
, vol.106
, Issue.2
, pp. 024509-024501
-
-
Odili, D.I.1
Wu, Y.2
Childs, P.A.3
Herbert, D.C.4
-
17
-
-
43849089350
-
Properties of semiconductors
-
91st ed. Boulder, CO: CRC Press, 2010/2011.
-
L. I. Berger, "Properties of semiconductors," in Handbook of Chemistry and Physics, 91st ed. Boulder, CO: CRC Press, 2010/2011.
-
Handbook of Chemistry and Physics
-
-
Berger, L.I.1
-
18
-
-
0034187066
-
Sp3s* tightbinding parameters for transport simulations in compound semiconductors
-
May
-
G. Klimeck, R. C. Bowen, T. B. Boykin, and T. A. Cwik, " sp3s* tightbinding parameters for transport simulations in compound semiconductors," Superlattices Microstruct., vol. 27, no. 5/6, pp. 519-524, May 2000.
-
(2000)
Superlattices Microstruct
, vol.27
, Issue.5-6
, pp. 519-524
-
-
Klimeck, G.1
Bowen, R.C.2
Boykin, T.B.3
Cwik, T.A.4
-
19
-
-
77953649905
-
Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes
-
L. Jiao, L. Zhang, L. Ding, J. Liu, and H. Dai, "Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes," Nano Res., vol. 3, no. 6, pp. 387-394, 2010.
-
(2010)
Nano Res.
, vol.3
, Issue.6
, pp. 387-394
-
-
Jiao, L.1
Zhang, L.2
Ding, L.3
Liu, J.4
Dai, H.5
-
20
-
-
77958452186
-
Selective etching of graphene edges by hydrogen plasma
-
Oct.
-
L. Xie, L. Jiao, and H. Dai, "Selective etching of graphene edges by hydrogen plasma," J. Amer. Chem. Soc., vol. 132, no. 42, pp. 14 751-14 753, Oct. 2010.
-
(2010)
J. Amer. Chem. Soc.
, vol.132
, Issue.42
, pp. 14751-14753
-
-
Xie, L.1
Jiao, L.2
Dai, H.3
-
21
-
-
40049093097
-
Chemically derived, ultrasmooth graphene nanoribbon semiconductors
-
DOI 10.1126/science.1150878
-
X. L. Lin, X. R.Wang, L. Zhang, S. Lee, and H. Dai, "Chemically derived, ultrasmooth graphene nanoribbon semiconductors," Science, vol. 319, no. 5867, pp. 1229-1232, Feb. 2008. (Pubitemid 351323015)
-
(2008)
Science
, vol.319
, Issue.5867
, pp. 1229-1232
-
-
Li, X.1
Wang, X.2
Zhang, L.3
Lee, S.4
Dai, H.5
-
22
-
-
46749150363
-
Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography
-
Jun.
-
L. Tapasztó, G. Dobrik, P. Lambin, and L. P. Biró, "Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography," Nature Nanotechnol., vol. 3, pp. 397-401, Jun. 2008.
-
(2008)
Nature Nanotechnol.
, vol.3
, pp. 397-401
-
-
Tapasztó, L.1
Dobrik, G.2
Lambin, P.3
Biró, L.P.4
-
23
-
-
77954707960
-
Capacitance of graphene nanoribbons
-
Nov
-
A. A. Shylau, J.W. Kłos, and I. V. Zozoulenko, "Capacitance of graphene nanoribbons," Phys. Rev. B, vol. 80, no. 20, pp. 205 402-205 410, Nov. 2009.
-
(2009)
Phys. Rev. B
, vol.80
, Issue.20
, pp. 205402-205410
-
-
Shylau, A.A.1
Kłos, J.W.2
Zozoulenko, I.V.3
|