메뉴 건너뛰기




Volumn 38, Issue 3, 2010, Pages 1733-1766

Approximation of conditional densities by smooth mixtures of regressions

Author keywords

Bayesian conditional density estimation; Finite mixtures of normal distributions; Mixtures of experts; Smoothly mixing regressions

Indexed keywords


EID: 77951494583     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/09-AOS765     Document Type: Article
Times cited : (60)

References (25)
  • 1
    • 84916537550 scopus 로고
    • Bayesian analysis of binary and polychotomous response data
    • MR1224394
    • ALBERT, J. H. and CHIB, S. (1993). Bayesian analysis of binary and polychotomous response data. J. Amer. Statist. Assoc. 88 669-679. MR1224394
    • (1993) J. Amer. Statist. Assoc , vol.88 , pp. 669-679
    • Albert, J.H.1    Chib, S.2
  • 2
    • 33947366371 scopus 로고    scopus 로고
    • Smoothly mixing regressions
    • MR2380699
    • GEWEKE, J. and KEANE, M. (2007). Smoothly mixing regressions. J. Econometrics 138 252-290. MR2380699
    • (2007) J. Econometrics , vol.138 , pp. 252-290
    • Geweke, J.1    Keane, M.2
  • 4
    • 33845348251 scopus 로고
    • Conditional choice probabilities and the estimation of dynamic models
    • MR1236835
    • HOTZ, J. and MILLER, R. (1993). Conditional choice probabilities and the estimation of dynamic models. Rev. Econom. Stud. 60 497-530. MR1236835
    • (1993) Rev. Econom. Stud , vol.60 , pp. 497-530
    • Hotz, J.1    Miller, R.2
  • 5
    • 0001940458 scopus 로고
    • Adaptive mixtures of local experts
    • Available at
    • JACOBS, R. A., JORDAN, M. I., NOWLAN, S. J. and HINTON, G. E. (1991). Adaptive mixtures of local experts. Neural Comput. 3 79-87. Available at http://dx.doi.org/10.1162/neco.1991.3.1.79.
    • (1991) Neural Comput , vol.3 , pp. 79-87
    • Jacobs, R.A.1    Jordan, M.I.2    Nowlan, S.J.3    Hinton, G.E.4
  • 6
    • 0027273789 scopus 로고
    • Maximum likelihood in a generalized linear finite mixture model by using the em algorithm
    • JANSEN, R. C. (1993). Maximum likelihood in a generalized linear finite mixture model by using the em algorithm. Biometrics 49 227-231.
    • (1993) Biometrics , vol.49 , pp. 227-231
    • Jansen, R.C.1
  • 7
    • 0033248628 scopus 로고    scopus 로고
    • Hierarchical mixtures-of-experts for exponential family regression models: Approximation and maximum likelihood estimation
    • MR1724038
    • JIANG, W. and TANNER, M. (1999). Hierarchical mixtures-of-experts for exponential family regression models: Approximation and maximum likelihood estimation. Ann. Statist. 27 987-1011. MR1724038
    • (1999) Ann. Statist , vol.27 , pp. 987-1011
    • Jiang, W.1    Tanner, M.2
  • 8
    • 84985569561 scopus 로고
    • Fitting finite mixture models in a regression context
    • JONES, P. and MCLACHLAN, G. J. (1992). Fitting finite mixture models in a regression context. Aust. N. Z. J. Stat. 34 233-240.
    • (1992) Aust. N. Z. J. Stat , vol.34 , pp. 233-240
    • Jones, P.1    Mclachlan, G.J.2
  • 9
    • 0029617280 scopus 로고
    • Convergence results for the em approach to mixtures of experts architectures
    • JORDAN, M. and XU, L. (1995). Convergence results for the em approach to mixtures of experts architectures. Neural Networks 8 1409-1431.
    • (1995) Neural Networks , vol.8 , pp. 1409-1431
    • Jordan, M.1    Xu, L.2
  • 10
    • 0000262562 scopus 로고
    • Hierarchical mixtures of experts and the EM algorithm
    • JORDAN, M. I. and JACOBS, R. A. (1994). Hierarchical mixtures of experts and the EM algorithm. Neural Comput. 6 181-214.
    • (1994) Neural Comput , vol.6 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 11
    • 0001213803 scopus 로고
    • Discrete parameter variation: Efficient estimation of a switching regression model
    • MR0483200
    • KIEFER, N. M. (1978). Discrete parameter variation: Efficient estimation of a switching regression model. Econometrica 46 427-434. MR0483200
    • (1978) Econometrica , vol.46 , pp. 427-434
    • Kiefer, N.M.1
  • 13
    • 0032166654 scopus 로고    scopus 로고
    • Approximation bounds for smooth functions in c(rd) by neural and mixture networks
    • MAIOROV, V. andMEIR, R. (1998). Approximation bounds for smooth functions in c(rd) by neural and mixture networks. Neural Networks, IEEE Transactions 9 969-978.
    • (1998) Neural Networks, IEEE Transactions , vol.9 , pp. 969-978
    • Maiorov, V.1    Andmeir, R.2
  • 15
    • 84860591034 scopus 로고    scopus 로고
    • Bayesian modeling of joint and conditional distributions
    • Princeton Univ
    • NORETS, A. and PELENIS, J. (2009). Bayesian modeling of joint and conditional distributions. Unpublished manuscript, Princeton Univ.
    • (2009) Unpublished manuscript
    • Norets, A.1    Pelenis, J.2
  • 16
    • 0030327271 scopus 로고    scopus 로고
    • Bayesian inference in mixtures-of-experts and hierarchical mixtures-of-experts models with an application to speech recognition
    • PENG, F., JACOBS, R. A. and TANNER, M. A. (1996). Bayesian inference in mixtures-of-experts and hierarchical mixtures-of-experts models with an application to speech recognition. J. Amer. Statist. Assoc. 91 953-960.
    • (1996) J. Amer. Statist. Assoc , vol.91 , pp. 953-960
    • Peng, F.1    Jacobs, R.A.2    Tanner, M.A.3
  • 17
    • 84950321853 scopus 로고
    • Estimating mixtures of normal distributions and switching regressions
    • MR0521324
    • QUANDT, R. E. and RAMSEY, J. B. (1978). Estimating mixtures of normal distributions and switching regressions. J. Amer. Statist. Assoc. 73 730-738. MR0521324
    • (1978) J. Amer. Statist. Assoc , vol.73 , pp. 730-738
    • Quandt, R.E.1    Ramsey, J.B.2
  • 18
    • 21744460005 scopus 로고    scopus 로고
    • Practical bayesian density estimation using mixtures of normals
    • MR1482121
    • ROEDER, K. andWASSERMAN, L. (1997). Practical bayesian density estimation using mixtures of normals. J. Amer. Statist. Assoc. 92 894-902. MR1482121
    • (1997) J. Amer. Statist. Assoc , vol.92 , pp. 894-902
    • Roeder, K.1    Andwasserman, L.2
  • 19
    • 70350192140 scopus 로고    scopus 로고
    • Numerical dynamic programming in economics
    • (H. Amman, D. Kendrick and J. Rust, eds.). North-Holland, Amsterdam. Available at MR1416619
    • RUST, J. (1996). Numerical dynamic programming in economics. In Handbook of Computational Economics (H. Amman, D. Kendrick and J. Rust, eds.). North-Holland, Amsterdam. Available at http://gemini.econ.umd.edu/jrust/sdp/ndp. pdf. MR1416619
    • (1996) Handbook of Computational Economics
    • Rust, J.1
  • 20
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation
    • MR0898357
    • TANNER, M. A. andWONG, W. H. (1987). The calculation of posterior distributions by data augmentation. J. Amer. Statist. Assoc. 82 528-540. MR0898357
    • (1987) J. Amer. Statist. Assoc , vol.82 , pp. 528-540
    • Tanner, M.A.1    Wong, W.H.2
  • 21
    • 70349427041 scopus 로고    scopus 로고
    • Regression density estimation using smooth adaptive Gaussian mixtures
    • VILLANI, M., KOHN, R. and GIORDANI, P. (2009). Regression density estimation using smooth adaptive Gaussian mixtures. J. Econometrics 153 155-173.
    • (2009) J. Econometrics , vol.153 , pp. 155-173
    • Villani, M.1    Kohn, R.2    Giordani, P.3
  • 22
    • 34249753047 scopus 로고
    • A mixture likelihood approach for generalized linear models
    • WEDEL, M. and DESARBO, W. (1995). A mixture likelihood approach for generalized linear models. J. Classification 12 21-55.
    • (1995) J. Classification , vol.12 , pp. 21-55
    • Wedel, M.1    Desarbo, W.2
  • 23
    • 13844262338 scopus 로고    scopus 로고
    • Bayesian mixture of splines for spatially adaptive nonparametric regression
    • MR1929159
    • WOOD, S., JIANG, W. and TANNER, M. (2002). Bayesian mixture of splines for spatially adaptive nonparametric regression. Biometrika 89 513-528. MR1929159
    • (2002) Biometrika , vol.89 , pp. 513-528
    • Wood, S.1    Jiang, W.2    Tanner, M.3
  • 24
    • 0032072087 scopus 로고    scopus 로고
    • Error bounds for functional approximation and estimation using mixtures of experts
    • MR1616675
    • ZEEVI, A., MEIR, R. and MAIOROV, V. (1998). Error bounds for functional approximation and estimation using mixtures of experts. IEEE Trans. Inform. Theory 44 1010-1025. MR1616675
    • (1998) IEEE Trans. Inform. Theory , vol.44 , pp. 1010-1025
    • Zeevi, A.1    Meir, R.2    Maiorov, V.3
  • 25
    • 0031037819 scopus 로고    scopus 로고
    • Density estimation through convex combinations of densities: Approximation and estimation bounds
    • ZEEVI, A. J. and MEIR, R. (1997). Density estimation through convex combinations of densities: Approximation and estimation bounds. Neural Networks 10 99-109.
    • (1997) Neural Networks , vol.10 , pp. 99-109
    • Zeevi, A.J.1    Meir, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.