메뉴 건너뛰기




Volumn 35, Issue 4, 2011, Pages 489-498

Classifying epilepsy diseases using artificial neural networks and genetic algorithm

Author keywords

EEG; Genetic algorithm (GA); Multilayer perceptron (MLP)

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; CLINICAL ASSESSMENT; CLINICAL EFFECTIVENESS; CONTROLLED STUDY; DELTA BAR DELTA; DIAGNOSTIC ACCURACY; DIAGNOSTIC VALUE; ELECTROENCEPHALOGRAM; EPILEPSY; FOURIER TRANSFORMATION; GENETIC ALGORITHM; HUMAN; INTERMETHOD COMPARISON; LEVENBERG MARQUARDT; MOMENTUM AND CONJUGATE GRADIENT; PERCEPTRON; QUICKPROP; SENSITIVITY AND SPECIFICITY; TIME SERIES ANALYSIS;

EID: 79961172206     PISSN: 01485598     EISSN: 1573689X     Source Type: Journal    
DOI: 10.1007/s10916-009-9385-3     Document Type: Article
Times cited : (29)

References (40)
  • 1
    • 13444308983 scopus 로고    scopus 로고
    • Czech Technical University in Prague Depmment of Cybernetics, date unknown
    • Novak, D.; et al.; EEG and VEP signal processing. Czech Technical University in Prague Depmment of Cybernetics, date unknown.
    • EEG and VEP Signal Processing
    • Novak, D.1
  • 3
    • 38349123053 scopus 로고    scopus 로고
    • Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection
    • Ghosh-Dastidar, S.; Hojjat, A.; and Nahid, D.; Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Trans. Biomed. Eng. 55(2), 2008.
    • (2008) IEEE Trans. Biomed. Eng , vol.55 , Issue.2
    • Ghosh-Dastidar, S.1    Hojjat, A.2    Nahid, D.3
  • 5
    • 0036276923 scopus 로고    scopus 로고
    • Automatic recognition of alertness and drowsiness from EEG by an artificial neural network
    • DOI 10.1016/S1350-4533(02)00030-9, PII S1350453302000309
    • A. Vuckovic V. A. Radivojevic C. N. Chen D. Popovic 2002 Automatic recognition of alertness and drowsiness from EEG by an artificial neural network Med. Eng. Phys. 24 349 360 10.1016/S1350-4533(02)00030-9 (Pubitemid 34607443)
    • (2002) Medical Engineering and Physics , vol.24 , Issue.5 , pp. 349-360
    • Vuckovic, A.1    Radivojevic, V.2    Chen, A.C.N.3    Popovic, D.4
  • 6
    • 0000224116 scopus 로고
    • Classification of electroencephalogram using artificial neural networks
    • Cowan, J. D.; Tesauro, G.; and Alspector, J. (Eds.) Morgan Kaufmann
    • Tsoi, A. C.; So, D. S. C.; and Sergejew, A.; Classification of electroencephalogram using artificial neural networks. In: Cowan, J. D.; Tesauro, G.; and Alspector, J. (Eds.), Advances in Neural Information Processing Systems. Morgan Kaufmann, 6:1151-1158, 1994.
    • (1994) Advances in Neural Information Processing Systems , vol.6 , pp. 1151-1158
    • Tsoi, A.C.1    So, S.D.C.2    Sergejew, A.3
  • 7
    • 0028853235 scopus 로고
    • Evaluations of parametric methods in EEG signal analysis
    • 10.1016/1350-4533(95)90380-T
    • S.-Y. Tseng R.-C. Chen F.-C. Chong T.-S. Kuo 1995 Evaluations of parametric methods in EEG signal analysis Med. Eng. Phys. 17 71 78 10.1016/1350-4533(95)90380-T
    • (1995) Med. Eng. Phys. , vol.17 , pp. 71-78
    • Tseng, S.-Y.1    Chen, R.-C.2    Chong, F.-C.3    Kuo, T.-S.4
  • 8
    • 0026775675 scopus 로고
    • Review of neural network applications in medical imaging and signal processing
    • 10.1007/BF02457822
    • A. S. Miller B. H. Blott T. K. Hames 1992 Review of neural network applications in medical imaging and signal processing Med. Biol. Eng. Comput. 30 449 64 10.1007/BF02457822
    • (1992) Med. Biol. Eng. Comput. , vol.30 , pp. 449-64
    • Miller, A.S.1    Blott, B.H.2    Hames, T.K.3
  • 10
    • 0033990625 scopus 로고    scopus 로고
    • Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG
    • 10.1016/S0925-2312(99)00126-5
    • A. Petrosian D. Prokhorov R. Homan R. Dashei D. Wunsch 2000 Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG Neurocomputing 30 201 218 10.1016/S0925-2312(99)00126-5
    • (2000) Neurocomputing , vol.30 , pp. 201-218
    • Petrosian, A.1    Prokhorov, D.2    Homan, R.3    Dashei, R.4    Wunsch, D.5
  • 11
    • 3242686951 scopus 로고    scopus 로고
    • Backpropagation artificial neural network to detect hyperthermic seizures in rats
    • R. K. Sinha 2002 Backpropagation artificial neural network to detect hyperthermic seizures in rats Online Journal of Health and Allied Sciences 4 1
    • (2002) Online Journal of Health and Allied Sciences , vol.4 , pp. 1
    • Sinha, R.K.1
  • 12
    • 5644255894 scopus 로고    scopus 로고
    • Automatic recognition of alertness level by using wavelet transform and artificial neural network
    • DOI 10.1016/j.jneumeth.2004.04.027, PII S0165027004001724
    • M. K. Kiymik M. Akin A. Subasi 2004 Automatic recognition of alertness level by using wavelets transform and artificial neural network J. Neurosci. Methods 139 231 240 10.1016/j.jneumeth.2004.04.027 (Pubitemid 39370849)
    • (2004) Journal of Neuroscience Methods , vol.139 , Issue.2 , pp. 231-240
    • Kiymik, M.K.1    Akin, M.2    Subasi, A.3
  • 13
    • 7244219929 scopus 로고    scopus 로고
    • An artificial neural network to detect eeg seizures [9]
    • R. K. Sinha A. K. Ray N. K. Agrawal 2004 An artificial neural network to detect EEG seizures Neurol. India 52 399 400 (Pubitemid 39430213)
    • (2004) Neurology India , vol.52 , Issue.3 , pp. 399-400
    • Sinha, R.K.1    Ray, A.K.2    Agrawal, N.K.3
  • 14
    • 33646135537 scopus 로고    scopus 로고
    • Automatic detection of epileptic seizure using dynamic fuzzy neural networks
    • 10.1016/j.eswa.2005.09.027
    • A. Subasi 2006 Automatic detection of epileptic seizure using dynamic fuzzy neural networks Expert Syst. Appl. 31 320 328 10.1016/j.eswa.2005.09.027
    • (2006) Expert Syst. Appl. , vol.31 , pp. 320-328
    • Subasi, A.1
  • 15
    • 63149180384 scopus 로고    scopus 로고
    • Epileptic spike recognition in electroencephalogram using deterministic finite automata
    • 10.1007/s10916-008-9177-1
    • A. K. Keshri R. K. Sinha R. Hatwal B. N. Das 2009 Epileptic spike recognition in electroencephalogram using deterministic finite automata J. Med. Syst. 33 173 179 10.1007/s10916-008-9177-1
    • (2009) J. Med. Syst. , vol.33 , pp. 173-179
    • Keshri, A.K.1    Sinha, R.K.2    Hatwal, R.3    Das, B.N.4
  • 17
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
    • 10.1103/PhysRevE.64.061907
    • R. Andrzejak K. Lehnertz C. Rieke, et al. 2001 Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state Phys. Rev. E 64 061907 10.1103/PhysRevE.64.061907
    • (2001) Phys. Rev. e , vol.64 , pp. 061907
    • Andrzejak, R.1    Lehnertz, K.2    Rieke, C.3
  • 18
    • 79961173530 scopus 로고    scopus 로고
    • php?idcat=193&lang=3&change lang=3.Lastaccessedon:July23,2009
    • Online. Available: http://www.meb.unibonn.de/epileptologie/cms/front/ content.php?idcat=193&lang=3&changelang=3. Last accessed on: July 23, 2009.
  • 19
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • DOI 10.1016/j.eswa.2006.02.005, PII S0957417406000844
    • A. Subasi 2007 EEG signal classification using wavelet feature extraction and a mixture of expert model Expert Syst. Appl. 32 1084 1093 10.1016/j.eswa.2006.02.005 (Pubitemid 44821797)
    • (2007) Expert Systems with Applications , vol.32 , Issue.4 , pp. 1084-1093
    • Subasi, A.1
  • 20
    • 21544468321 scopus 로고    scopus 로고
    • Classification of EMG signals using FFT and PCA
    • Güler, N. F.; Koçer, S.; Classification of EMG signals using FFT and PCA. J. Med. Syst. 29(3), 2005.
    • (2005) J. Med. Syst , vol.29 , Issue.3
    • Güler, N.F.1    Koçer, S.2
  • 21
  • 22
    • 11244317025 scopus 로고    scopus 로고
    • Automatic detection of epileptiform events in EEG by a three-stage procedure based on artificial neural networks
    • DOI 10.1109/TBME.2004.839630
    • N. AcIr I. Oztura M. Kuntalp, et al. 2005 Automatic detection of epileptiform events in EEG by a three-stage procedure based on artificial neural networks IEEE Trans. Biomed. Eng. 52 30 40 10.1109/TBME.2004.839630 (Pubitemid 40065607)
    • (2005) IEEE Transactions on Biomedical Engineering , vol.52 , Issue.1 , pp. 30-40
    • Acir, N.1    Oztura, I.2    Kuntalp, M.3    Baklan, B.4    Guzelis, C.5
  • 25
    • 0000873069 scopus 로고
    • A method for the solution of certain nonlinear problems in least squares
    • 10666 0063.03501
    • K. Levenberg 1944 A method for the solution of certain nonlinear problems in least squares Q. Appl. Math. 2 164 168 10666 0063.03501
    • (1944) Q. Appl. Math. , vol.2 , pp. 164-168
    • Levenberg, K.1
  • 26
    • 0000169232 scopus 로고
    • An algorithm for least-squares estimation of nonlinear parameters
    • 153071 0112.10505 10.1137/0111030
    • D. W. Marquardt 1963 An algorithm for least-squares estimation of nonlinear parameters J. Soc. Ind. Appl. Math. 11 431 441 153071 0112.10505 10.1137/0111030
    • (1963) J. Soc. Ind. Appl. Math. , vol.11 , pp. 431-441
    • Marquardt, D.W.1
  • 27
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • 10.1016/S0893-6080(05)80056-5
    • M. F. Moller 1993 A scaled conjugate gradient algorithm for fast supervised learning Neural Netw. 6 525 533 10.1016/S0893-6080(05)80056-5
    • (1993) Neural Netw. , vol.6 , pp. 525-533
    • Moller, M.F.1
  • 28
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • 10.1016/0893-6080(88)90003-2
    • R. A. Jacobs 1988 Increased rates of convergence through learning rate adaptation Neural Netw. 1 4 295 307 10.1016/0893-6080(88)90003-2
    • (1988) Neural Netw. , vol.1 , Issue.4 , pp. 295-307
    • Jacobs, R.A.1
  • 29
    • 0003000735 scopus 로고
    • Faster-learning variations on back-propagation: An empirical study
    • Touretzky, D.; Hinton, G, and Sejnowski, T.; (Eds.) Morgan Kaufmann
    • Fahlman, S. E.; Faster-learning variations on back-propagation: An empirical study. In: Touretzky, D.; Hinton, G, and Sejnowski, T.; (Eds.), Proceedings of the 1988 Connectionist Models Summer School. Morgan Kaufmann, 38-51, 1989.
    • (1989) Proceedings of the 1988 Connectionist Models Summer School , pp. 38-51
    • Fahlman, S.E.1
  • 31
    • 0242718584 scopus 로고    scopus 로고
    • Department of Chemical and Process Engineering University of New castle upon Tyne September 2001
    • Hinchliffe, M.; Dynamic modelling using genetic programming. Department of Chemical and Process Engineering University of New castle upon Tyne September 2001.
    • Dynamic Modelling Using Genetic Programming
    • Hinchliffe, M.1
  • 33
    • 57949102475 scopus 로고    scopus 로고
    • Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm
    • 10.1016/j.jmatprotec.2008.04.003
    • G. Krishna Mohana Raoa G. Rangajanardhaa D. Hanumantha Raoc M. Sreenivasa Raoa 2009 Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm J. Mater. Process. Technol. 209 1512 1520 10.1016/j.jmatprotec.2008. 04.003
    • (2009) J. Mater. Process. Technol. , vol.209 , pp. 1512-1520
    • Krishna Mohana Raoa, G.1    Rangajanardhaa, G.2    Hanumantha Raoc, D.3    Sreenivasa Raoa, M.4
  • 34
    • 21644434168 scopus 로고    scopus 로고
    • Use of support vector machinesneural network in diagnosis of neuromuscular disorders
    • Güler, N. F.; and Koçer, S.; Use of support vector machinesneural network in diagnosis of neuromuscular disorders. J. Med. Syst. 29(3), 2005.
    • (2005) J. Med. Syst , vol.29 , Issue.3
    • Güler, N.F.1    Koçer, S.2
  • 38
    • 79960727073 scopus 로고
    • Genetic algorithms and the design of artificial neural networks
    • Reeves, C. R.; and Steele, N. C.; Genetic algorithms and the design of artificial neural networks. IEEE 'Microarch' 15-20, 1991.
    • (1991) IEEE 'Microarch' , pp. 15-20
    • Reeves, C.R.1    Steele, N.C.2
  • 40
    • 17344381470 scopus 로고    scopus 로고
    • Use of genetic algorithm to design optimal neural network structure
    • N. Ozturk 2001 Use of genetic algorithm to design optimal neural network structure Eng. Comput. 7 979 997
    • (2001) Eng. Comput. , vol.7 , pp. 979-997
    • Ozturk, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.