메뉴 건너뛰기




Volumn 6178 LNAI, Issue , 2010, Pages 360-369

Fuzzy multivariable gaussian evolving approach for fault detection and diagnosis

Author keywords

Adaptive Fault Detection and Diagnosis; Evolving Fuzzy Systems; Participatory Learning

Indexed keywords

ADAPTIVE FAULT DETECTION AND DIAGNOSIS; APRIORI; DIAGNOSIS SYSTEMS; DYNAMIC SYSTEMS; FAULT DETECTION AND DIAGNOSIS; FAULT DIAGNOSIS; FUZZY CLASSIFIERS; GAUSSIANS; INCREMENTAL LEARNING; INDUCTION MACHINES; MULTI VARIABLES; NEW OPERATION MODES; PARTICIPATORY LEARNING; UNSUPERVISED CLUSTERING;

EID: 77954877922     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-14049-5_37     Document Type: Conference Paper
Times cited : (19)

References (19)
  • 1
    • 0037443770 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis part I: Quantitative model-based methods
    • DOI 10.1016/S0098-1354(02)00160-6, PII S0098135402001606
    • Venkatasubramanian, V., Rengaswamy, R., Kavuri, S., Yin, K.: A review of process fault detection and diagnosis Part I: Quantitative model-based methods. Computers & Chemical Engineering 27(3), 293-311 (2003) (Pubitemid 36285962)
    • (2003) Computers and Chemical Engineering , vol.27 , Issue.3 , pp. 293-311
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Yin, K.3    Kavuri, S.N.4
  • 4
    • 28844433590 scopus 로고    scopus 로고
    • Modified self-organising map for automated novelty detection applied to vibration signal monitoring
    • Wong, M., Jack, L., Nandi, A.: Modified self-organising map for automated novelty detection applied to vibration signal monitoring. Mechanical Systems and Signal Processing 20(3), 593-610 (2006)
    • (2006) Mechanical Systems and Signal Processing , vol.20 , Issue.3 , pp. 593-610
    • Wong, M.1    Jack, L.2    Nandi, A.3
  • 6
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: A review part 1: Statistical approaches
    • Markou, M., Singh, S.: Novelty detection: A review part 1: Statistical approaches. Signal Processing 83, 2499-2521 (2003)
    • (2003) Signal Processing , vol.83 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 12
    • 57149083711 scopus 로고    scopus 로고
    • On-line fault detection with data-driven evolving fuzzy models
    • Lughofer, E., Guardioler, C.: On-line fault detection with data-driven evolving fuzzy models. Control and Intelligent Systems 36(4), 307-317 (2008)
    • (2008) Control and Intelligent Systems , vol.36 , Issue.4 , pp. 307-317
    • Lughofer, E.1    Guardioler, C.2
  • 13
    • 58149502268 scopus 로고    scopus 로고
    • An evolving fuzzy predictor for industrial applications
    • Wang, W., Vrbanek, J.: An evolving fuzzy predictor for industrial applications. IEEE Transactions on Fuzzy Systems 16(6), 1439-1449 (2008)
    • (2008) IEEE Transactions on Fuzzy Systems , vol.16 , Issue.6 , pp. 1439-1449
    • Wang, W.1    Vrbanek, J.2
  • 14
    • 35448950018 scopus 로고    scopus 로고
    • Extensions of vector quantization for incremental clustering
    • Part Special issue: Feature Generation and Machine Learning for Robust Multimodal Biometrics
    • Lughofer, E.: Extensions of vector quantization for incremental clustering. Pattern Recognition 41(3), 995-1011 (2008); Part Special issue: Feature Generation and Machine Learning for Robust Multimodal Biometrics
    • (2008) Pattern Recognition , vol.41 , Issue.3 , pp. 995-1011
    • Lughofer, E.1
  • 18
    • 77954871398 scopus 로고    scopus 로고
    • Incipient fault detection in induction machine stator-winding using a fuzzy-bayesian change point detection approach
    • Press, Corrected Proof
    • D'Angelo, M.F., Palhares, R.M., Takahashi, R.H., Loschi, R.H., Baccarini, L.M., Caminhas, W.M.: Incipient fault detection in induction machine stator-winding using a fuzzy-bayesian change point detection approach. Applied Soft Computing (2009) (in Press, Corrected Proof)
    • (2009) Applied Soft Computing
    • D'Angelo, M.F.1    Palhares, R.M.2    Takahashi, R.H.3    Loschi, R.H.4    Baccarini, L.M.5    Caminhas, W.M.6
  • 19
    • 70349417730 scopus 로고    scopus 로고
    • Fault induction dynamic model, suitable for computer simulation: Simulation results and experimental validation
    • Baccarini, L.M.R., de Menezes, B.R., Caminhas, W.M.: Fault induction dynamic model, suitable for computer simulation: Simulation results and experimental validation.Mechanical Systems and Signal Processing 24(1), 300-311 (2010)
    • (2010) Mechanical Systems and Signal Processing , vol.24 , Issue.1 , pp. 300-311
    • Baccarini, L.M.R.1    De Menezes, B.R.2    Caminhas, W.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.