메뉴 건너뛰기




Volumn 2006, Issue , 2006, Pages 246-257

Joint cluster analysis of attribute data and relationship data: The Connected k-Center problem

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMIC LANGUAGES; APPROXIMATION THEORY; DATA MINING; DATABASE SYSTEMS; HEURISTIC METHODS; STATISTICAL METHODS;

EID: 33745484604     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972764.22     Document Type: Conference Paper
Times cited : (39)

References (27)
  • 1
    • 0347172110 scopus 로고    scopus 로고
    • Optics: Ordering points to identify the clustering structure
    • M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. Optics: ordering points to identify the clustering structure. In SIGMOD, 1999.
    • (1999) SIGMOD
    • Ankerst, M.1    Breunig, M.M.2    Kriegel, H.-P.3    Sander, J.4
  • 2
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of scaling in random networks
    • A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286:509-512, 1999.
    • (1999) Science , vol.286 , pp. 509-512
    • Barabási, A.-L.1    Albert, R.2
  • 3
    • 12244300524 scopus 로고    scopus 로고
    • A probabilistic framework for semi-supervised clustering
    • S. Basu, M. Bilenko, and R. Mooney. A probabilistic framework for semi-supervised clustering. In KDD, 2004.
    • (2004) KDD
    • Basu, S.1    Bilenko, M.2    Mooney, R.3
  • 4
    • 33745483086 scopus 로고    scopus 로고
    • C. S. Bibliography. DBLP. http://www.informatik.unitrier.de/ley/db/index. html. 2005.
    • (2005) DBLP
    • Bibliography, C.S.1
  • 8
    • 84880095768 scopus 로고    scopus 로고
    • Clustering with constraints: Feasibility issues and the k-means algorithm
    • I. Davidson and S. S. Ravi. Clustering with constraints: Feasibility issues and the k-means algorithm. In SDM, 2005.
    • (2005) SDM
    • Davidson, I.1    Ravi, S.S.2
  • 10
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD, pages 226-231, 1996.
    • (1996) KDD , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 11
    • 0032652570 scopus 로고    scopus 로고
    • Rock: A robust clustering algorithm for categorical attributes
    • S. Guha, R. Rastogi, and K. Shim. Rock: a robust clustering algorithm for categorical attributes. In ICDE, 1999.
    • (1999) ICDE
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 14
    • 0034515528 scopus 로고    scopus 로고
    • A clustering algorithm based on graph connectivity
    • E. Hartuv and R. Shamir. A clustering algorithm based on graph connectivity. Information Processing Letters, 76:175-181, 2000.
    • (2000) Information Processing Letters , vol.76 , pp. 175-181
    • Hartuv, E.1    Shamir, R.2
  • 18
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon: A hierarchical clustering algorithm using dynamic modeling
    • G. Karypis, E. Han, and V. Kumar. Chameleon: A hierarchical clustering algorithm using dynamic modeling. IEEE COMPUTER, 32:68-75, 1999.
    • (1999) IEEE Computer , vol.32 , pp. 68-75
    • Karypis, G.1    Han, E.2    Kumar, V.3
  • 20
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • J. MacQueen. Some methods for classification and analysis of multivariate observations. In 5th Berkeley Symp. Math. Statist. prob., pages 281-297, 1967.
    • (1967) 5th Berkeley Symp. Math. Statist. Prob. , pp. 281-297
    • MacQueen, J.1
  • 21
    • 0021373110 scopus 로고
    • On the complexity of some common geometric location problems
    • N. Megiddo and K. J. Supowit. On the complexity of some common geometric location problems. SIAM J. Comput., 13(1):182-196, 1984.
    • (1984) SIAM J. Comput. , vol.13 , Issue.1 , pp. 182-196
    • Megiddo, N.1    Supowit, K.J.2
  • 22
    • 0003136237 scopus 로고
    • Efficient and effective clustering methods for spatial data mining
    • R. Ng and J. Han. Efficient and effective clustering methods for spatial data mining. In VLDB, 1994.
    • (1994) VLDB
    • Ng, R.1    Han, J.2
  • 24
    • 0001599923 scopus 로고
    • The location of emergency service facilities
    • C. Toregas, R. Swan, C. Revelle, and L. Bergman. The location of emergency service facilities. Oper. Res., 19:1363-1373, 1971.
    • (1971) Oper. Res. , vol.19 , pp. 1363-1373
    • Toregas, C.1    Swan, R.2    Revelle, C.3    Bergman, L.4
  • 25
    • 84949423737 scopus 로고    scopus 로고
    • Constraint-based clustering in large databases
    • A. K. H. Tung, R. T. Ng, L. V. S. Lakshmanan, and J. Han. Constraint-based clustering in large databases. In ICDT, pages 405-419, 2001.
    • (2001) ICDT , pp. 405-419
    • Tung, A.K.H.1    Ng, R.T.2    Lakshmanan, L.V.S.3    Han, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.