메뉴 건너뛰기




Volumn 106, Issue 4-5, 2012, Pages 201-217

Recognizing recurrent neural networks (rRNN): Bayesian inference for recurrent neural networks

Author keywords

Bayesian inference; Human motion; Nonlinear dynamics; Recurrent neural networks

Indexed keywords

BAYESIAN INFERENCE; BAYESIAN INVERSION; BRAIN FUNCTIONS; BRAIN PROCESSING; COMPUTATIONAL NEUROSCIENCE; DYNAMIC STIMULI; FAST DECODING; GENERATIVE MODEL; HUMAN KINEMATICS; HUMAN MOTIONS; INITIAL CONDITIONS; MACHINE LEARNING APPLICATIONS; NEURONAL NETWORKS; NONLINEAR FUNCTIONS; PREDICTIVE CODING;

EID: 84864538788     PISSN: 03401200     EISSN: 14320770     Source Type: Journal    
DOI: 10.1007/s00422-012-0490-x     Document Type: Article
Times cited : (18)

References (71)
  • 2
    • 66149156441 scopus 로고    scopus 로고
    • The proactive brain: Memory for predictions
    • doi:10.1098/rstb. 2008.0310
    • Bar M (2009) The proactive brain: memory for predictions. Philos Trans R Soc Lond B 364(1521): 1235-1243. Doi:10.1098/rstb. 2008.0310
    • (2009) Philos Trans R Soc Lond B , vol.364 , Issue.1521 , pp. 1235-1243
    • Bar, M.1
  • 3
    • 33847014843 scopus 로고    scopus 로고
    • Perception of human motion
    • doi:10.1146/annurev.psych.57.102904. 190152
    • Blake R, Shiffrar M (2007) Perception of human motion. Annu Rev Psychol 58: 47-73. Doi:10.1146/annurev.psych.57.102904. 190152
    • (2007) Annu Rev Psychol , vol.58 , pp. 47-73
    • Blake, R.1    Shiffrar, M.2
  • 4
    • 79952458995 scopus 로고    scopus 로고
    • Spike-based population coding and working memory
    • doi:10.1371/journal.pcbi.1001080
    • BoerlinM, Denève S (2011) Spike-based population coding and working memory. PLoS Comput Biol 7(2):e1001-080. Doi:10.1371/ journal.pcbi.1001080
    • (2011) PLoS Comput Biol , vol.7 , Issue.2
    • Boerlin, M.1    Denève, S.2
  • 5
    • 58549091090 scopus 로고    scopus 로고
    • State-dependent computations: Spatiotemporal processing in cortical networks
    • doi:10.1038/nrn2558
    • Buonomano DV, MaassW (2009) State-dependent computations: spatiotemporal processing in cortical networks. Nat Rev Neurosci 10(2): 113-125. Doi:10.1038/nrn2558
    • (2009) Nat Rev Neurosci , vol.10 , Issue.2 , pp. 113-125
    • Buonomano, D.V.1    Maass, W.2
  • 6
    • 34247552160 scopus 로고    scopus 로고
    • From neuron to neural networks dynamics
    • doi:10.1140/epjst/ e2007-00058-2
    • Cessac B, Samuelides M (2007) From neuron to neural networks dynamics. Eur Phys J 142: 7-88. Doi:10.1140/epjst/ e2007-00058-2
    • (2007) Eur Phys J , vol.142 , pp. 7-88
    • Cessac, B.1    Samuelides, M.2
  • 7
    • 0028401357 scopus 로고
    • Recurrent neural networks and robust time series prediction
    • doi:10.1109/72.279188
    • Connor JT,Martin RD, Atlas LE (1994) Recurrent neural networks and robust time series prediction. IEEE Trans Neural Netw 5(2): 240-254. Doi:10.1109/72.279188
    • (1994) IEEE Trans Neural Netw , vol.5 , Issue.2 , pp. 240-254
    • Connor, J.T.1    Martin, R.D.2    Atlas, L.E.3
  • 8
    • 70349243080 scopus 로고    scopus 로고
    • Variational bayesian identification and prediction of stochastic nonlinear dynamic causal models
    • doi:10.1016/j.physd.2009. 08.002
    • Daunizeau J, Friston K, Kiebel S (2009) Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models. Physica D 238(21): 2089-2118. Doi:10.1016/j.physd.2009. 08.002
    • (2009) Physica D , vol.238 , Issue.21 , pp. 2089-2118
    • Daunizeau, J.1    Friston, K.2    Kiebel, S.3
  • 10
    • 37749042762 scopus 로고    scopus 로고
    • Bayesian spiking neurons i inference
    • doi:10.1162/neco.2008.20.1.91
    • Denève S (2008) Bayesian spiking neurons i inference. Neural Comput 20(1): 91-117. Doi:10.1162/neco.2008.20.1.91
    • (2008) Neural Comput , vol.20 , Issue.1 , pp. 91-117
    • Denève, S.1
  • 11
    • 84864530127 scopus 로고    scopus 로고
    • To see how these standard covariance matrices are translated into generalized coordinates, we refer the reader to Friston et al. (2008, p. 860
    • To see how these standard covariance matrices are translated into generalized coordinates, we refer the reader to Friston et al. (2008, p. 860).
  • 12
    • 34250633136 scopus 로고    scopus 로고
    • Optimal sensorimotor integration in recurrent cortical networks a neural implementation of kalman filters
    • doi:10.1523/ JNEUROSCI.3985-06.2007
    • Denève S, Duhamel JR, Pouget A (2007) Optimal sensorimotor integration in recurrent cortical networks a neural implementation of Kalman filters. J Neurosci 27(21): 5744-5756. Doi:10.1523/ JNEUROSCI.3985-06.2007
    • (2007) J Neurosci , vol.27 , Issue.21 , pp. 5744-5756
    • Denève, S.1    Duhamel, J.R.2    Pouget, A.3
  • 13
    • 0141803858 scopus 로고    scopus 로고
    • Parameter estimation in general state-space models using particle methods
    • doi:10.1007/BF02530508
    • Doucet A, Tadić V (2003) Parameter estimation in general state-space models using particle methods. Ann Inst Stat Math 55: 409-422. Doi:10.1007/BF02530508
    • (2003) Ann Inst Stat Math , vol.55 , pp. 409-422
    • Doucet, A.1    Tadić, V.2
  • 15
    • 26444565569 scopus 로고
    • Finding structure in time
    • doi:10.1207/s15516709cog1402-1
    • Elman JL (1990) Finding structure in time. Cogn Sci 14(2): 179-211. Doi:10.1207/s15516709cog1402-1
    • (1990) Cogn Sci , vol.14 , Issue.2 , pp. 179-211
    • Elman, J.L.1
  • 16
    • 0036334947 scopus 로고    scopus 로고
    • Bayesian estimation of dynamical systems an application to fmri
    • doi:10.1006/nimg. 2001.1044
    • Friston KJ (2002) Bayesian estimation of dynamical systems an application to fMRI. NeuroImage 16(2): 513-530. Doi:10.1006/nimg. 2001.1044
    • (2002) NeuroImage , vol.16 , Issue.2 , pp. 513-530
    • Friston, K.J.1
  • 17
    • 66149122170 scopus 로고    scopus 로고
    • Predictive coding under the free-energy principle
    • doi:10. 1098/rstb.2008.0300
    • FristonK,Kiebel S (2009) Predictive coding under the free-energy principle. Philos Trans R Soc Lond B 364(1521): 1211-1221. Doi:10. 1098/rstb.2008.0300
    • (2009) Philos Trans R Soc Lond B , vol.364 , Issue.1521 , pp. 1211-1221
    • Friston, K.1    Kiebel, S.2
  • 18
    • 0036334982 scopus 로고    scopus 로고
    • Classical and bayesian inference in neuroimaging theory
    • doi:10.1006/nimg.2002.1090
    • Friston KJ, Penny W, Phillips C, Kiebel S, Hinton G, Ashburner J (2002) Classical and bayesian inference in neuroimaging theory. NeuroImage 16(2): 465-483. Doi:10.1006/nimg.2002.1090
    • (2002) NeuroImage , vol.16 , Issue.2 , pp. 465-483
    • Friston, K.J.1    Penny, W.2    Phillips, C.3    Kiebel, S.4    Hinton, G.5    Ashburner, J.6
  • 20
    • 44449115519 scopus 로고    scopus 로고
    • Dem a variational treatment of dynamic systems
    • doi:10.1016/j.neuroimage.2008.02.054
    • Friston K, Trujillo-Barreto N, Daunizeau J (2008) DEM A variational treatment of dynamic systems. NeuroImage 41(3): 849-885. Doi:10.1016/j. neuroimage.2008.02.054
    • (2008) NeuroImage , vol.41 , Issue.3 , pp. 849-885
    • Friston, K.1    Trujillo-Barreto, N.2    Daunizeau, J.3
  • 22
    • 84899003086 scopus 로고    scopus 로고
    • Propagation algorithms for variational bayesian learning
    • LeenT, DietterichT,TrespV(eds), MIT Press, Cambridge
    • Ghahramani Z, Beal MJ (2001) Propagation algorithms for variational bayesian learning. In:LeenT, DietterichT,TrespV(eds)Advances in neural information processing systems, vol 13, MIT Press, Cambridge, pp 507-513
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 507-513
    • Ghahramani, Z.1    Beal, M.J.2
  • 23
    • 15244362261 scopus 로고    scopus 로고
    • The reentry hypothesis the putative interaction of the frontal eye field ventrolateral prefrontal cortex and areas v4 it for attention and eye movement
    • doi:10.1093/cercor/bhh146
    • Hamker FH (2005) The reentry hypothesis the putative interaction of the frontal eye field ventrolateral prefrontal cortex and areas v4 it for attention and eye movement. Cereb Cortex 15(4): 431-447. Doi:10.1093/cercor/bhh146
    • (2005) Cereb Cortex , vol.15 , Issue.4 , pp. 431-447
    • Hamker, F.H.1
  • 25
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • doi:10. 1126/science.1127647
    • Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313(5786): 504-507. Doi:10. 1126/science.1127647
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 27
    • 34249938474 scopus 로고    scopus 로고
    • Optimization and applications of echo state networks with leaky-integrator neurons
    • doi:10.1016/j.neunet.2007. 04.016
    • Jaeger H, Lukosevicius M, Popovici D, Siewert U (2007) Optimization and applications of echo state networks with leaky-integrator neurons. Neural Netw 20(3): 335-352. Doi:10.1016/j.neunet.2007. 04.016
    • (2007) Neural Netw , vol.20 , Issue.3 , pp. 335-352
    • Jaeger, H.1    Lukosevicius, M.2    Popovici, D.3    Siewert, U.4
  • 29
    • 11144344479 scopus 로고    scopus 로고
    • The excitator as a minimal model for the coordination dynamics of discrete and rhythmic movement generation
    • doi:10.3200/JMBR.37.1.35-51
    • Jirsa VK, Kelso JAS (2005) The excitator as a minimal model for the coordination dynamics of discrete and rhythmic movement generation. J Mot Behav 37(1): 35-51. Doi:10.3200/JMBR.37.1.35-51
    • (2005) J Mot Behav , vol.37 , Issue.1 , pp. 35-51
    • Jirsa, V.K.1    Kelso, J.A.S.2
  • 32
    • 33646137121 scopus 로고    scopus 로고
    • Dynamic causal modelling of evoked responses in eeg/meg with lead field parameterization
    • doi:10.1016/j.neuroimage.2005. 12.055
    • Kiebel SJ, David O, Friston KJ (2006) Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization. NeuroImage 30(4): 1273-1284. Doi:10.1016/j.neuroimage.2005. 12.055
    • (2006) NeuroImage , vol.30 , Issue.4 , pp. 1273-1284
    • Kiebel, S.J.1    David, O.2    Friston, K.J.3
  • 33
    • 57149100752 scopus 로고    scopus 로고
    • A hierarchy of time-scales and the brain
    • doi:10.1371/journal.pcbi.1000209
    • Kiebel SJ, Daunizeau J, Friston KJ (2008) A hierarchy of time-scales and the brain. PLoS Comput Biol 4(11): e1000-209. Doi:10.1371/ journal.pcbi.1000209
    • (2008) PLoS Comput Biol , vol.4 , Issue.11
    • Kiebel, S.J.1    Daunizeau, J.2    Friston, K.J.3
  • 36
    • 77957343940 scopus 로고    scopus 로고
    • Sorn a self-organizing recurrent neural network
    • doi:10.3389/neuro.10. 023.2009
    • Lazar A, Pipa G, Triesch J (2009) Sorn a self-organizing recurrent neural network. Front Comput Neurosci 3:23. Doi:10.3389/neuro.10. 023.2009
    • (2009) Front Comput Neurosci , vol.3 , pp. 23
    • Lazar, A.1    Pipa, G.2    Triesch, J.3
  • 37
    • 33847177741 scopus 로고    scopus 로고
    • What makes a dynamical system computationally powerful? In
    • Haykin S, Principe JC, Sejnowski TJ, McWhirter JG(eds), MIT Press, Cambridge
    • Legenstein R, Maass W (2007) What makes a dynamical system computationally powerful? In: Haykin S, Principe JC, Sejnowski TJ, McWhirter JG(eds) Newdirections in statistical signal processing: from systems to brains, MIT Press, Cambridge, pp 127-154
    • (2007) Newdirections in statistical signal processing: from systems to brains , pp. 127-154
    • Legenstein, R.1    Maass, W.2
  • 38
    • 0036834701 scopus 로고    scopus 로고
    • Real-time computingwithout stable states a new framework for neural computation based on perturbations
    • doi:10.1162/089976602760407955
    • MaassW,Natschlger T,MarkramH (2002) Real-time computingwithout stable states a new framework for neural computation based on perturbations. Neural Comput 14(11): 2531-2560. Doi:10.1162/ 089976602760407955
    • (2002) Neural Comput , vol.14 , Issue.11 , pp. 2531-2560
    • Maass, W.1    Natschlger, T.2    Markram, H.3
  • 39
    • 80053937786 scopus 로고    scopus 로고
    • Why have dendrites? A computational perspective
    • Chap. 16. In: Stuart G, Spruston N, Häusser M (eds), 2nd edn. Oxford University Press, Oxford
    • Mel BW (2008) Why have dendrites? a computational perspective, Chap. 16. In: Stuart G, Spruston N, Häusser M (eds) Dendrites, 2nd edn. Oxford University Press, Oxford
    • (2008) Dendrites
    • Mel, B.W.1
  • 40
    • 0034928713 scopus 로고    scopus 로고
    • An integrative theory of prefrontal cortex function
    • doi:10.1146/annurev. Neuro.24.1.167
    • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24: 167-202. Doi:10.1146/annurev. Neuro.24.1.167
    • (2001) Annu Rev Neurosci , vol.24 , pp. 167-202
    • Miller, E.K.1    Cohen, J.D.2
  • 41
    • 0033110949 scopus 로고    scopus 로고
    • The dynamics of goal-directed rhythmical aiming
    • doi:10.1007/s004220050521
    • Mottet D, Bootsma RJ (1999) The dynamics of goal-directed rhythmical aiming. Biol Cybern 80(4): 235-245. Doi:10.1007/ s004220050521
    • (1999) Biol Cybern , vol.80 , Issue.4 , pp. 235-245
    • Mottet, D.1    Bootsma, R.J.2
  • 42
    • 0002131260 scopus 로고    scopus 로고
    • Pattern theory: A unifying perspective
    • Knill DC Richards W (eds). Cambridge University Press, Cambridge
    • Mumford D (1996) Pattern theory: a unifying perspective. In: Knill DC Richards W (eds) Perception as Bayesian inference. Cambridge University Press, Cambridge
    • (1996) Perception as Bayesian Inference
    • Mumford, D.1
  • 43
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • doi:10.1109/72.80202
    • Narendra K, Parthasarathy K (1990) Identification and control of dynamical systems using neural networks. IEEE Trans Neural Netw 1(1): 4-27. Doi:10.1109/72.80202
    • (1990) IEEE Trans Neural Netw , vol.1 , Issue.1 , pp. 4-27
    • Narendra, K.1    Parthasarathy, K.2
  • 44
    • 51349131136 scopus 로고    scopus 로고
    • Encoding and decoding spikes for dynamic stimuli
    • doi:10.1162/neco.2008.01-07-436
    • Natarajan R, Huys QJM, Dayan P, Zemel RS (2008) Encoding and decoding spikes for dynamic stimuli. Neural Comput 20(9): http://www.mitpressjournals. org/doi/pdf/10.1162/neco.2008. 01-07-436 2325-2360. Doi:10.1162/neco.2008.01-07- 436
    • (2008) Neural Comput , vol.20 , Issue.9
    • Natarajan, R.1    Huys, Q.J.M.2    Dayan, P.3    Zemel, R.S.4
  • 45
    • 0035505570 scopus 로고    scopus 로고
    • An algorithmic approach to adaptive state filtering using recurrent neural networks
    • doi:10.1109/72.963777
    • Parlos A, Menon S, Atiya A (2001) An algorithmic approach to adaptive state filtering using recurrent neural networks. IEEE Trans Neural Netw 12(6): 1411-1432. Doi:10.1109/72.963777
    • (2001) IEEE Trans Neural Netw , vol.12 , Issue.6 , pp. 1411-1432
    • Parlos, A.1    Menon, S.2    Atiya, A.3
  • 46
    • 0001202597 scopus 로고
    • Learning state space trajectories in recurrent neural networks
    • doi:10.1162/neco.1989.1.2.263
    • Pearlmutter BA (1989) Learning state space trajectories in recurrent neural networks. Neural Comput 1(2): http://www. Mitpressjournals.org/doi/pdf/ 10.1162/neco.1989.1.2.263 263-269. Doi:10.1162/neco.1989.1.2.263
    • (1989) Neural Comput , vol.1 , Issue.2
    • Pearlmutter, B.A.1
  • 47
    • 79951828685 scopus 로고    scopus 로고
    • Complex processes from dynamical architectures with time-scale hierarchy
    • 2, doi:10.1371/journal.pone.0016589
    • Perdikis D, Huys R, Jirsa V (2011a) Complex processes from dynamical architectures with time-scale hierarchy. PLoS One 6(2): e10-589. Doi:10.1371/journal.pone.0016589
    • (2011) PLoS One , vol.6
    • Perdikis, D.1    Huys, R.2    Jirsa, V.3
  • 48
    • 80053456319 scopus 로고    scopus 로고
    • Time scale hierarchies in the functional organization of complex behaviors
    • doi:10.1371/journal.pcbi.1002198
    • Perdikis D, Huys R, Jirsa VK (2011b) Time scale hierarchies in the functional organization of complex behaviors. PLoS Comput Biol 7(9): e1002-198. Doi:10.1371/journal.pcbi.1002198
    • (2011) PLoS Comput Biol , vol.7 , Issue.9
    • Perdikis, D.1    Huys, R.2    Jirsa, V.K.3
  • 49
    • 78651236823 scopus 로고    scopus 로고
    • Encoding of spatio-temporal input characteristics by a ca1 pyramidal neuron model
    • doi:10.1371/journal.pcbi.1001038
    • Pissadaki EK, Sidiropoulou K, Reczko M, Poirazi P (2010) Encoding of spatio-temporal input characteristics by a ca1 pyramidal neuron model. PLoS Comput Biol 6(12): e1001-038. Doi:10.1371/ journal.pcbi.1001038
    • (2010) PLoS Comput Biol , vol.6 , Issue.12
    • Pissadaki, E.K.1    Sidiropoulou, K.2    Reczko, M.3    Poirazi, P.4
  • 50
    • 0037468832 scopus 로고    scopus 로고
    • Pyramidal neuron as two-layer neural network
    • doi:10. 1016/S0896-6273(03)00149-1
    • Poirazi P, Brannon T, Mel BW (2003) Pyramidal neuron as two-layer neural network. Neuron 37(6): http://dx.doi.org 989-999. Doi:10. 1016/S0896-6273(03) 00149-1
    • (2003) Neuron , vol.37 , Issue.6 , pp. 989-999
    • Poirazi, P.1    Brannon, T.2    Mel, B.W.3
  • 51
    • 33751275508 scopus 로고    scopus 로고
    • Dynamical principles in neuroscience
    • doi:10.1103/RevModPhys.78.1213
    • Rabinovich MI, Varona P, Selverston AI, Abarbanel HDI (2006) Dynamical principles in neuroscience. Rev Mod Phys 78(4): 1213-1265. Doi:10.1103/ RevModPhys.78.1213
    • (2006) Rev Mod Phys , vol.78 , Issue.4 , pp. 1213-1265
    • Rabinovich, M.I.1    Varona, P.2    Selverston, A.I.3    Abarbanel, H.D.I.4
  • 52
    • 0347527070 scopus 로고    scopus 로고
    • Bayesian computation in recurrent neural circuits
    • doi:10.1162/08997660460733976
    • Rao RPN (2004) Bayesian computation in recurrent neural circuits. Neural Comput 16(1): 1-38. Doi:10.1162/08997660460733976
    • (2004) Neural Comput , vol.16 , Issue.1 , pp. 1-38
    • Rao, R.P.N.1
  • 53
    • 0031570014 scopus 로고    scopus 로고
    • Dynamic model of visual recognition predicts neural response properties in the visual cortex
    • Rao RP, Ballard DH (1997) Dynamic model of visual recognition predicts neural response properties in the visual cortex. Neural Comput 9(4):721-763
    • (1997) Neural Comput , vol.9 , Issue.4 , pp. 721-763
    • Rao, R.P.1    Ballard, D.H.2
  • 54
    • 0033360288 scopus 로고    scopus 로고
    • Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects
    • doi:10.1038/4580
    • Rao RP, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci 2(1): 79-87. Doi:10.1038/4580
    • (1999) Nat Neurosci , vol.2 , Issue.1 , pp. 79-87
    • Rao, R.P.1    Ballard, D.H.2
  • 55
    • 77952011014 scopus 로고    scopus 로고
    • Mappings between a macroscopic neural-mass model and a reduced conductance-based model
    • doi:10.1007/ s00422-010-0372-z
    • Rodrigues S, Chizhov AV, Marten F, Terry JR (2010) Mappings between a macroscopic neural-mass model and a reduced conductance-based model. Biol Cybern 102(5): 361-371. Doi:10.1007/ s00422-010-0372-z
    • (2010) Biol Cybern , vol.102 , Issue.5 , pp. 361-371
    • Rodrigues, S.1    Chizhov, A.V.2    Marten, F.3    Terry, J.R.4
  • 56
    • 1842702843 scopus 로고    scopus 로고
    • Learning nonlinear dynamical systems using the expectation-maximization algorithm
    • In Haykin S (ed). Wiley, New York. doi:10. 1002/0471221546
    • Roweis S, Ghahramani Z (2001) Learning nonlinear dynamical systems using the expectation-maximization algorithm. In Haykin S (ed) Kalman filtering and neural networks. Wiley, New York. Doi:10. 1002/0471221546
    • (2001) Kalman Filtering and Neural Networks
    • Roweis, S.1    Ghahramani, Z.2
  • 57
    • 78650803456 scopus 로고    scopus 로고
    • System identification of nonlinear state-space models
    • doi:10.1016/j. Automatica.2010.10.013
    • Schön TB, Wills A, Ninness B (2011) System identification of nonlinear state-space models. Automatica 47(1): 39-49. Doi:10.1016/j. Automatica.2010.10.013
    • (2011) Automatica , vol.47 , Issue.1 , pp. 39-49
    • Schön, T.B.1    Wills, A.2    Ninness, B.3
  • 58
    • 0025075110 scopus 로고
    • A dynamic theory of coordination of discrete movement
    • doi:10.1007/BF00203449
    • Schöner G (1990) A dynamic theory of coordination of discrete movement. Biol Cybern 63(4): 257-270. Doi:10.1007/BF00203449
    • (1990) Biol Cybern , vol.63 , Issue.4 , pp. 257-270
    • Schöner, G.1
  • 59
    • 33749507679 scopus 로고    scopus 로고
    • Inside the brain of a neuron
    • doi:10.1038/sj.embor. 7400789
    • Sidiropoulou K, Pissadaki EK, Poirazi P (2006) Inside the brain of a neuron. EMBO Rep 7(9): 886-892. Doi:10.1038/sj.embor. 7400789
    • (2006) EMBO Rep , vol.7 , Issue.9 , pp. 886-892
    • Sidiropoulou, K.1    Pissadaki, E.K.2    Poirazi, P.3
  • 60
  • 61
    • 39449125245 scopus 로고    scopus 로고
    • Pyramidal neurons: Dendritic structure and synaptic integration
    • doi:10.1038/ nrn2286
    • Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9(3): 206-221. Doi:10.1038/ nrn2286
    • (2008) Nat Rev Neurosci , vol.9 , Issue.3 , pp. 206-221
    • Spruston, N.1
  • 62
    • 33845194013 scopus 로고    scopus 로고
    • Predictive codes for forthcoming perception in the frontal cortex
    • doi:10.1126/science. 1132028
    • Summerfield C, Egner T, Greene M, Koechlin E, Mangels J, Hirsch J (2006) Predictive codes for forthcoming perception in the frontal cortex. Science 314(5803): 1311-1314. Doi:10.1126/science. 1132028
    • (2006) Science , vol.314 , Issue.5803 , pp. 1311-1314
    • Summerfield, C.1    Egner, T.2    Greene, M.3    Koechlin, E.4    Mangels, J.5    Hirsch, J.6
  • 64
    • 0028498606 scopus 로고
    • Synthetic approach to optimal filtering
    • doi:10.1109/72.317731
    • Ting-Ho Lo J (1994) Synthetic approach to optimal filtering. IEEE Trans Neural Netw 5(5): 803-811. Doi:10.1109/72.317731
    • (1994) IEEE Trans Neural Netw , vol.5 , Issue.5 , pp. 803-811
    • Ting-Ho Lo, J.1
  • 65
    • 0038132747 scopus 로고    scopus 로고
    • An unsupervised ensemble learning method for nonlinear dynamic state-space models
    • doi:10.1162/089976602760408017
    • Valpola H, Karhunen J (2002) An unsupervised ensemble learning method for nonlinear dynamic state-space models. Neural Comput 14(11): http://www.mitpressjournals.org/doi/ pdf/10.1162/089976602760408017 2647-2692. Doi:10.1162/ 089976602760408017
    • (2002) Neural Comput , vol.14 , Issue.11 , pp. 2647-2692
    • Valpola, H.1    Karhunen, J.2
  • 66
    • 12844278634 scopus 로고    scopus 로고
    • Visual speech speeds up the neural processing of auditory speech
    • doi:10.1073/pnas.0408949102
    • vanWassenhove V, Grant KW, Poeppel D (2005) Visual speech speeds up the neural processing of auditory speech. Proc Natl Acad Sci USA 102(4): 1181-1186. Doi:10.1073/pnas.0408949102
    • (2005) Proc Natl Acad Sci USA , vol.102 , Issue.4 , pp. 1181-1186
    • Van Wassenhove, V.1    Grant, K.W.2    Poeppel, D.3
  • 67
    • 34249815487 scopus 로고    scopus 로고
    • An experimental unification of reservoir computing methods
    • doi:10.1016/j.neunet.2007.04.003
    • Verstraeten D, Schrauwen B, D'Haene M, Stroobandt D (2007) An experimental unification of reservoir computing methods. Neural Netw 20(3): 391-403. Doi:10.1016/j.neunet.2007.04.003
    • (2007) Neural Netw , vol.20 , Issue.3 , pp. 391-403
    • Verstraeten, D.1    Schrauwen, B.2    D'Haene, M.3    Stroobandt, D.4
  • 68
    • 0003359612 scopus 로고    scopus 로고
    • The unscented kalman filter
    • In Haykin S (ed). Wiley, New York. doi:10.1002/0471221546
    • Wan EA, van der Merwe R (2001) The unscented Kalman filter. In Haykin S (ed) Kalman Filtering and Neural Networks.Wiley, New York. Doi:10.1002/ 0471221546
    • (2001) Kalman Filtering and Neural Networks
    • Wan, E.A.1    Van Der Merwe, R.2
  • 69
    • 0005943476 scopus 로고    scopus 로고
    • Dual extended kalman filter methods
    • In Haykin S (ed). Wiley, New York. doi:10.1002/0471221546
    • Wan EA, Nelson AT (2001) Dual extended Kalman filter methods. In Haykin S (ed) Kalman Filtering and Neural Networks.Wiley, New York. Doi:10.1002/ 0471221546
    • (2001) Kalman Filtering and Neural Networks
    • Wan, E.A.1    Nelson, A.T.2
  • 70
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • doi:10.1162/neco.1989.1.2.270
    • Williams RJ, Zipser D (1989) A learning algorithm for continually running fully recurrent neural networks. Neural Comput 1(2): http://www. mitpressjournals.org/doi/pdf/10.1162/neco. 1989.1.2.270 270-280. Doi:10.1162/neco.1989.1.2.270
    • (1989) Neural Comput , vol.1 , Issue.2 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 71
    • 84863393459 scopus 로고    scopus 로고
    • Aneural implementation of the kalman filter
    • Bengio Y, Schuurmans D, Lafferty J,Williams CKI, Culotta A (eds). MIT Press, Cambridge
    • Wilson R, Finkel L (2009)Aneural implementation of the Kalman filter. In: Bengio Y, Schuurmans D, Lafferty J,Williams CKI, Culotta A (eds) Advances in neural information processing systems, vol 22. MIT Press, Cambridge, pp 2062-2070
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 2062-2070
    • Wilson, R.1    Finkel, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.