메뉴 건너뛰기




Volumn 86, Issue 15, 2012, Pages 8232-8244

Increased interaction between vaccinia virus proteins A33 and B5 is detrimental to infectious extracellular enveloped virion production

Author keywords

[No Author keywords available]

Indexed keywords

ACTIN; GREEN FLUORESCENT PROTEIN; MUTANT PROTEIN; PROTEIN A33; PROTEIN B5; UNCLASSIFIED DRUG; VIRUS PROTEIN;

EID: 84864392481     PISSN: 0022538X     EISSN: 10985514     Source Type: Journal    
DOI: 10.1128/JVI.00253-12     Document Type: Article
Times cited : (11)

References (50)
  • 1
    • 0026039370 scopus 로고
    • Extracellular vaccinia virus formation and cellto-cell virus transmission are prevented by deletion of the gene encoding the 37000-dalton outer envelope protein
    • Blasco R, Moss B. 1991. Extracellular vaccinia virus formation and cellto-cell virus transmission are prevented by deletion of the gene encoding the 37,000-dalton outer envelope protein. J. Virol. 65:5910-5920.
    • (1991) J. Virol. , vol.65 , pp. 5910-5920
    • Blasco, R.1    Moss, B.2
  • 2
    • 77954168702 scopus 로고    scopus 로고
    • Vaccinia virus B5 protein affects the glycosylation, localization and stability of the A34 protein
    • Breiman A, Smith GL. 2010. Vaccinia virus B5 protein affects the glycosylation, localization and stability of the A34 protein. J. Gen. Virol. 91: 1823-1827.
    • (2010) J. Gen. Virol. , vol.91 , pp. 1823-1827
    • Breiman, A.1    Smith, G.L.2
  • 3
    • 78049251317 scopus 로고    scopus 로고
    • The inability of vaccinia virus A33R protein to form intermolecular disulfide-bonded homodimers does not affect the production of infectious extracellular virus
    • Chan WM, Kalkanoglu AE, Ward BM. 2010. The inability of vaccinia virus A33R protein to form intermolecular disulfide-bonded homodimers does not affect the production of infectious extracellular virus. Virology 408:109-118.
    • (2010) Virology , vol.408 , pp. 109-118
    • Chan, W.M.1    Kalkanoglu, A.E.2    Ward, B.M.3
  • 4
    • 84864380568 scopus 로고    scopus 로고
    • The A33-dependent incorporation of B5 into extracellular enveloped vaccinia virions is mediated through an interaction between their lumenal domains
    • Chan WM, Ward BM. 2012. The A33-dependent incorporation of B5 into extracellular enveloped vaccinia virions is mediated through an interaction between their lumenal domains. J. Virol. 86:8210-8220.
    • (2012) J. Virol. , vol.86 , pp. 8210-8220
    • Chan, W.M.1    Ward, B.M.2
  • 5
    • 77952568117 scopus 로고    scopus 로고
    • There is an A33-dependent mechanism for the incorporation of B5-GFP into vaccinia virus extracellular enveloped virions
    • Chan WM, Ward BM. 2010. There is an A33-dependent mechanism for the incorporation of B5-GFP into vaccinia virus extracellular enveloped virions. Virology 402:83-93.
    • (2010) Virology , vol.402 , pp. 83-93
    • Chan, W.M.1    Ward, B.M.2
  • 6
    • 66249115329 scopus 로고    scopus 로고
    • Vaccinia virus p37 interacts with host proteins associated with LE-derived transport vesicle biogenesis
    • Chen Y, et al. 2009. Vaccinia virus p37 interacts with host proteins associated with LE-derived transport vesicle biogenesis. Virol. J. 6:44.
    • (2009) Virol. J. , vol.6 , pp. 44
    • Chen, Y.1
  • 7
    • 33746577836 scopus 로고    scopus 로고
    • In a nutshell: structure and assembly of the vaccinia virion
    • Condit RC, Moussatche N, Traktman P. 2006. In a nutshell: structure and assembly of the vaccinia virion. Adv. Virus Res. 66:31-124.
    • (2006) Adv. Virus Res. , vol.66 , pp. 31-124
    • Condit, R.C.1    Moussatche, N.2    Traktman, P.3
  • 8
    • 0026576331 scopus 로고
    • Identification and characterization of an extracellular envelope glycoprotein affecting vaccinia virus egress
    • Duncan SA, Smith GL. 1992. Identification and characterization of an extracellular envelope glycoprotein affecting vaccinia virus egress. J. Virol. 66:1610-1621.
    • (1992) J. Virol. , vol.66 , pp. 1610-1621
    • Duncan, S.A.1    Smith, G.L.2
  • 9
    • 0000498346 scopus 로고
    • Generation of recombinant vaccinia viruses
    • Greene Publishing Associates & Wiley Interscience, New York, NY In Ausubel FM, et al. (ed), 16.17.11-16.17.16
    • Earl PL, Moss B. 1991. Generation of recombinant vaccinia viruses, p 16.17.11-16.17.16. In Ausubel FM, et al. (ed), Current protocols in molecular biology, vol 2. Greene Publishing Associates & Wiley Interscience, New York, NY.
    • (1991) Current protocols in molecular biology , vol.2
    • Earl, P.L.1    Moss, B.2
  • 10
    • 39749143311 scopus 로고    scopus 로고
    • The vaccinia virus B5 protein requires A34 for efficient intracellular trafficking from the endoplasmic reticulum to the site of wrapping and incorporation into progeny virions
    • Earley AK, Chan WM, Ward BM. 2008. The vaccinia virus B5 protein requires A34 for efficient intracellular trafficking from the endoplasmic reticulum to the site of wrapping and incorporation into progeny virions. J. Virol. 82:2161-2169.
    • (2008) J. Virol. , vol.82 , pp. 2161-2169
    • Earley, A.K.1    Chan, W.M.2    Ward, B.M.3
  • 11
    • 0026655115 scopus 로고
    • A constitutively expressed vaccinia gene encodes a 42-kDa glycoprotein related to complement control factors that forms part of the extracellular virus envelope
    • Engelstad M, Howard ST, Smith GL. 1992. A constitutively expressed vaccinia gene encodes a 42-kDa glycoprotein related to complement control factors that forms part of the extracellular virus envelope. Virology 188:801-810.
    • (1992) Virology , vol.188 , pp. 801-810
    • Engelstad, M.1    Howard, S.T.2    Smith, G.L.3
  • 12
    • 0027319075 scopus 로고
    • The vaccinia virus 42-kDa envelope protein is required for the envelopment and egress of extracellular virus and for virus virulence
    • Engelstad M, Smith GL. 1993. The vaccinia virus 42-kDa envelope protein is required for the envelopment and egress of extracellular virus and for virus virulence. Virology 194:627-637.
    • (1993) Virology , vol.194 , pp. 627-637
    • Engelstad, M.1    Smith, G.L.2
  • 13
    • 0033613455 scopus 로고    scopus 로고
    • Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling
    • Frischknecht F, et al. 1999. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature 401:926-929.
    • (1999) Nature , vol.401 , pp. 926-929
    • Frischknecht, F.1
  • 14
    • 0000233999 scopus 로고
    • Eukaryotic transientexpression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase
    • Fuerst TR, Niles EG, Studier FW, Moss B. 1986. Eukaryotic transientexpression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc. Natl. Acad. Sci. U. S. A. 83: 8122-8126.
    • (1986) Proc. Natl. Acad. Sci. U. S. A. , vol.83 , pp. 8122-8126
    • Fuerst, T.R.1    Niles, E.G.2    Studier, F.W.3    Moss, B.4
  • 15
    • 2642647850 scopus 로고    scopus 로고
    • Functional analysis of vaccinia virus B5R protein: essential role in virus envelopment is independent of a large portion of the extracellular domain
    • Herrera E, del Mar Lorenzo M, Blasco R, Isaacs SN. 1998. Functional analysis of vaccinia virus B5R protein: essential role in virus envelopment is independent of a large portion of the extracellular domain. J. Virol. 72:294-302.
    • (1998) J. Virol. , vol.72 , pp. 294-302
    • Herrera, E.1    del Mar Lorenzo, M.2    Blasco, R.3    Isaacs, S.N.4
  • 16
    • 0022211611 scopus 로고
    • Golgi-derived membranes that contain an acylated viral polypeptide are used for vaccinia virus envelopment
    • Hiller G, Weber K. 1985. Golgi-derived membranes that contain an acylated viral polypeptide are used for vaccinia virus envelopment. J. Virol. 55:651-659.
    • (1985) J. Virol. , vol.55 , pp. 651-659
    • Hiller, G.1    Weber, K.2
  • 17
    • 33750520133 scopus 로고    scopus 로고
    • A coiled-coil domain of melanophilin is essential for myosin Va recruitment and melanosome transport in melanocytes
    • Hume AN, Tarafder AK, Ramalho JS, Sviderskaya EV, Seabra MC. 2006. A coiled-coil domain of melanophilin is essential for myosin Va recruitment and melanosome transport in melanocytes. Mol. Biol. Cell 17:4720-4735.
    • (2006) Mol. Biol. Cell , vol.17 , pp. 4720-4735
    • Hume, A.N.1    Tarafder, A.K.2    Ramalho, J.S.3    Sviderskaya, E.V.4    Seabra, M.C.5
  • 18
    • 0026454214 scopus 로고
    • Characterization of a vaccinia virus-encoded 42-kilodalton class I membrane glycoprotein component of the extracellular virus envelope
    • Isaacs SN, Wolffe EJ, Payne LG, Moss B. 1992. Characterization of a vaccinia virus-encoded 42-kilodalton class I membrane glycoprotein component of the extracellular virus envelope. J. Virol. 66:7217-7224.
    • (1992) J. Virol. , vol.66 , pp. 7217-7224
    • Isaacs, S.N.1    Wolffe, E.J.2    Payne, L.G.3    Moss, B.4
  • 19
    • 59649095042 scopus 로고    scopus 로고
    • Vaccinia virus protein F12 associates with intracellular enveloped virions through an interaction with A36
    • Johnston SC, Ward BM. 2009. Vaccinia virus protein F12 associates with intracellular enveloped virions through an interaction with A36. J. Virol. 83:1708-1717.
    • (2009) J. Virol. , vol.83 , pp. 1708-1717
    • Johnston, S.C.1    Ward, B.M.2
  • 21
    • 0031911650 scopus 로고    scopus 로고
    • The extracellular domain of vaccinia virus protein B5R affects plaque phenotype, extracellular enveloped virus release, and intracellular actin tail formation
    • Mathew E, Sanderson CM, Hollinshead M, Smith GL. 1998. The extracellular domain of vaccinia virus protein B5R affects plaque phenotype, extracellular enveloped virus release, and intracellular actin tail formation. J. Virol. 72:2429-2438.
    • (1998) J. Virol. , vol.72 , pp. 2429-2438
    • Mathew, E.1    Sanderson, C.M.2    Hollinshead, M.3    Smith, G.L.4
  • 22
    • 0001142643 scopus 로고    scopus 로고
    • Poxviridae: the viruses and their replication
    • fourth ed, Lippincott-Raven Publishers, Philadelphia, PA, In Fields BN, Knipe DM, Howley PM (ed)
    • Moss B. 2001. Poxviridae: the viruses and their replication, p 2849-2883. In Fields BN, Knipe DM, Howley PM (ed), Fields virology, fourth ed, vol 2. Lippincott-Raven Publishers, Philadelphia, PA.
    • (2001) Fields virology , vol.2 , pp. 2849-2883
    • Moss, B.1
  • 23
    • 6044223321 scopus 로고    scopus 로고
    • SRC mediates a switch from microtubule-to actin-based motility of vaccinia virus
    • Newsome TP, Scaplehorn N, Way M. 2004. SRC mediates a switch from microtubule-to actin-based motility of vaccinia virus. Science 306:124-129.
    • (2004) Science , vol.306 , pp. 124-129
    • Newsome, T.P.1    Scaplehorn, N.2    Way, M.3
  • 24
    • 0026566342 scopus 로고
    • Characterization of vaccinia virus glycoproteins by monoclonal antibody preparations
    • Payne LG. 1992. Characterization of vaccinia virus glycoproteins by monoclonal antibody preparations. Virology 187:251-260.
    • (1992) Virology , vol.187 , pp. 251-260
    • Payne, L.G.1
  • 25
    • 33748671566 scopus 로고    scopus 로고
    • Interaction between vaccinia virus extracellular virus envelope A33 and B5 glycoproteins
    • Perdiguero B, Blasco R. 2006. Interaction between vaccinia virus extracellular virus envelope A33 and B5 glycoproteins. J. Virol. 80:8763-8777.
    • (2006) J. Virol. , vol.80 , pp. 8763-8777
    • Perdiguero, B.1    Blasco, R.2
  • 26
    • 39749149673 scopus 로고    scopus 로고
    • Vaccinia virus A34 glycoprotein determines the protein composition of the extracellular virus envelope
    • Perdiguero B, Lorenzo MM, Blasco R. 2008. Vaccinia virus A34 glycoprotein determines the protein composition of the extracellular virus envelope. J. Virol. 82:2150-2160.
    • (2008) J. Virol. , vol.82 , pp. 2150-2160
    • Perdiguero, B.1    Lorenzo, M.M.2    Blasco, R.3
  • 27
    • 67849133622 scopus 로고    scopus 로고
    • Acidic residues in the membrane-proximal stalk region of vaccinia virus protein B5 are required for glycosaminoglycanmediated disruption of the extracellular enveloped virus outer membrane
    • Roberts KL, et al. 2009. Acidic residues in the membrane-proximal stalk region of vaccinia virus protein B5 are required for glycosaminoglycanmediated disruption of the extracellular enveloped virus outer membrane. J. Gen. Virol. 90:1582-1591.
    • (2009) J. Gen. Virol. , vol.90 , pp. 1582-1591
    • Roberts, K.L.1
  • 28
    • 53049097995 scopus 로고    scopus 로고
    • Vaccinia virus morphogenesis and dissemination
    • Roberts KL, Smith GL. 2008. Vaccinia virus morphogenesis and dissemination. Trends Microbiol. 16:472-479.
    • (2008) Trends Microbiol , vol.16 , pp. 472-479
    • Roberts, K.L.1    Smith, G.L.2
  • 29
    • 0029994032 scopus 로고    scopus 로고
    • Extracellular vaccinia virus envelope glycoprotein encoded by the A33R gene
    • Roper RL, Payne LG, Moss B. 1996. Extracellular vaccinia virus envelope glycoprotein encoded by the A33R gene. J. Virol. 70:3753-3762.
    • (1996) J. Virol. , vol.70 , pp. 3753-3762
    • Roper, R.L.1    Payne, L.G.2    Moss, B.3
  • 30
    • 0031958096 scopus 로고    scopus 로고
    • The envelope protein encoded by the A33R gene is required for formation of actin-containing microvilli and efficient cell-to-cell spread of vaccinia virus
    • Roper RL, Wolffe EJ, Weisberg A, Moss B. 1998. The envelope protein encoded by the A33R gene is required for formation of actin-containing microvilli and efficient cell-to-cell spread of vaccinia virus. J. Virol. 72: 4192-4204.
    • (1998) J. Virol. , vol.72 , pp. 4192-4204
    • Roper, R.L.1    Wolffe, E.J.2    Weisberg, A.3    Moss, B.4
  • 31
    • 0345471829 scopus 로고    scopus 로고
    • Interactions between vaccinia virus IEV membrane proteins and their roles in IEV assembly and actin tail formation
    • Röttger S, Frischknecht F, Reckmann I, Smith GL, Way M. 1999. Interactions between vaccinia virus IEV membrane proteins and their roles in IEV assembly and actin tail formation. J. Virol. 73:2863-2875.
    • (1999) J. Virol. , vol.73 , pp. 2863-2875
    • Röttger, S.1    Frischknecht, F.2    Reckmann, I.3    Smith, G.L.4    Way, M.5
  • 32
    • 0028097957 scopus 로고
    • Assembly of vaccinia virus: the second wrapping cisterna is derived from the trans Golgi network
    • Schmelz M, et al. 1994. Assembly of vaccinia virus: the second wrapping cisterna is derived from the trans Golgi network. J. Virol. 68:130-147.
    • (1994) J. Virol. , vol.68 , pp. 130-147
    • Schmelz, M.1
  • 33
    • 0022625330 scopus 로고
    • Nucleotide sequence of the vaccinia virus hemagglutinin gene
    • Shida H. 1986. Nucleotide sequence of the vaccinia virus hemagglutinin gene. Virology 150:451-462.
    • (1986) Virology , vol.150 , pp. 451-462
    • Shida, H.1
  • 34
    • 0036932713 scopus 로고    scopus 로고
    • The formation and function of extracellular enveloped vaccinia virus
    • Smith GL, Vanderplasschen A, Law M. 2002. The formation and function of extracellular enveloped vaccinia virus. J. Gen. Virol. 83:2915-2931.
    • (2002) J. Gen. Virol. , vol.83 , pp. 2915-2931
    • Smith, G.L.1    Vanderplasschen, A.2    Law, M.3
  • 35
    • 77649200550 scopus 로고    scopus 로고
    • The structure of the poxvirus A33 protein reveals a dimer of unique C-type lectin-like domains
    • Su HP, Singh K, Gittis AG, Garboczi DN. 2010. The structure of the poxvirus A33 protein reveals a dimer of unique C-type lectin-like domains. J. Virol. 84:2502-2510.
    • (2010) J. Virol. , vol.84 , pp. 2502-2510
    • Su, H.P.1    Singh, K.2    Gittis, A.G.3    Garboczi, D.N.4
  • 36
    • 0027530255 scopus 로고
    • Progeny vaccinia and human cytomegalovirus particles utilize early endosomal cisternae for their envelopes
    • Tooze J, Hollinshead M, Reis B, Radsak K, Kern H. 1993. Progeny vaccinia and human cytomegalovirus particles utilize early endosomal cisternae for their envelopes. Eur. J. Cell Biol. 60:163-178.
    • (1993) Eur. J. Cell Biol. , vol.60 , pp. 163-178
    • Tooze, J.1    Hollinshead, M.2    Reis, B.3    Radsak, K.4    Kern, H.5
  • 37
    • 33645034664 scopus 로고    scopus 로고
    • The cowpox virus fusion regulator proteins SPI-3 and hemagglutinin interact in infected and uninfected cells
    • Turner PC, Moyer RW. 2006. The cowpox virus fusion regulator proteins SPI-3 and hemagglutinin interact in infected and uninfected cells. Virology 347:88-99.
    • (2006) Virology , vol.347 , pp. 88-99
    • Turner, P.C.1    Moyer, R.W.2
  • 38
    • 0036135767 scopus 로고    scopus 로고
    • The vaccinia virus F12L protein is associated with intracellular enveloped virus particles and is required for their egress to the cell surface
    • van Eijl H, Hollinshead M, Rodger G, Zhang WH, Smith GL. 2002. The vaccinia virus F12L protein is associated with intracellular enveloped virus particles and is required for their egress to the cell surface. J. Gen. Virol. 83:195-207.
    • (2002) J. Gen. Virol. , vol.83 , pp. 195-207
    • van Eijl, H.1    Hollinshead, M.2    Rodger, G.3    Zhang, W.H.4    Smith, G.L.5
  • 39
    • 0034713248 scopus 로고    scopus 로고
    • The vaccinia virus A36R protein is a type Ib membrane protein present on intracellular but not extracellular enveloped virus particles
    • van Eijl H, Hollinshead M, Smith GL. 2000. The vaccinia virus A36R protein is a type Ib membrane protein present on intracellular but not extracellular enveloped virus particles. Virology 271:26-36.
    • (2000) Virology , vol.271 , pp. 26-36
    • van Eijl, H.1    Hollinshead, M.2    Smith, G.L.3
  • 40
    • 34249936107 scopus 로고    scopus 로고
    • Association of vaccinia virus fusion regulatory proteins with the multicomponent entry/fusion complex
    • Wagenaar TR, Moss B. 2007. Association of vaccinia virus fusion regulatory proteins with the multicomponent entry/fusion complex. J. Virol. 81:6286-6293.
    • (2007) J. Virol. , vol.81 , pp. 6286-6293
    • Wagenaar, T.R.1    Moss, B.2
  • 41
    • 27244438010 scopus 로고    scopus 로고
    • The longest micron; transporting poxviruses out of the cell
    • Ward BM. 2005. The longest micron; transporting poxviruses out of the cell. Cell. Microbiol. 7:1531-1538.
    • (2005) Cell. Microbiol. , vol.7 , pp. 1531-1538
    • Ward, B.M.1
  • 42
    • 16244407153 scopus 로고    scopus 로고
    • Visualization and characterization of the intracellular movement of vaccinia virus intracellular mature virions
    • WardBM.2005. Visualization and characterization of the intracellular movement of vaccinia virus intracellular mature virions. J. Virol. 79:4755-4763.
    • (2005) J. Virol. , vol.79 , pp. 4755-4763
    • Ward, B.M.1
  • 43
    • 1242274535 scopus 로고    scopus 로고
    • Vaccinia virus A36R membrane protein provides a direct link between intracellular enveloped virions and the microtubule motor kinesin
    • Ward BM, Moss B. 2004. Vaccinia virus A36R membrane protein provides a direct link between intracellular enveloped virions and the microtubule motor kinesin. J. Virol. 78:2486-2493.
    • (2004) J. Virol. , vol.78 , pp. 2486-2493
    • Ward, B.M.1    Moss, B.2
  • 44
    • 0035164017 scopus 로고    scopus 로고
    • Vaccinia virus intracellular movement is associated with microtubules and independent of actin tails
    • Ward BM, Moss B. 2001. Vaccinia virus intracellular movement is associated with microtubules and independent of actin tails. J. Virol. 75: 11651-11663.
    • (2001) J. Virol. , vol.75 , pp. 11651-11663
    • Ward, B.M.1    Moss, B.2
  • 45
    • 0035027230 scopus 로고    scopus 로고
    • Visualization of intracellular movement of vaccinia virus virions containing a green fluorescent protein-B5R membrane protein chimera
    • Ward BM, Moss B. 2001. Visualization of intracellular movement of vaccinia virus virions containing a green fluorescent protein-B5R membrane protein chimera. J. Virol. 75:4802-4813.
    • (2001) J. Virol. , vol.75 , pp. 4802-4813
    • Ward, B.M.1    Moss, B.2
  • 46
    • 0037379187 scopus 로고    scopus 로고
    • Mapping and functional analysis of interaction sites within the cytoplasmic domains of the vaccinia virus A33R and A36R envelope proteins
    • Ward BM, Weisberg AS, Moss B. 2003. Mapping and functional analysis of interaction sites within the cytoplasmic domains of the vaccinia virus A33R and A36R envelope proteins. J. Virol. 77:4113-4126.
    • (2003) J. Virol. , vol.77 , pp. 4113-4126
    • Ward, B.M.1    Weisberg, A.S.2    Moss, B.3
  • 47
    • 0027162408 scopus 로고
    • Deletion of the vaccinia virus B5R gene encoding a 42-kilodalton membrane glycoprotein inhibits extracellular virus envelope formation and dissemination
    • Wolffe EJ, Isaacs SN, Moss B. 1993. Deletion of the vaccinia virus B5R gene encoding a 42-kilodalton membrane glycoprotein inhibits extracellular virus envelope formation and dissemination. J. Virol. 67:4732-4741.
    • (1993) J. Virol. , vol.67 , pp. 4732-4741
    • Wolffe, E.J.1    Isaacs, S.N.2    Moss, B.3
  • 48
    • 0032565358 scopus 로고    scopus 로고
    • Role for the vaccinia virus A36R outer envelope protein in the formation of virus-tipped actin-containing microvilli and cell-to-cell virus spread
    • Wolffe EJ, Weisberg AS, Moss B. 1998. Role for the vaccinia virus A36R outer envelope protein in the formation of virus-tipped actin-containing microvilli and cell-to-cell virus spread. Virology 244:20-26.
    • (1998) Virology , vol.244 , pp. 20-26
    • Wolffe, E.J.1    Weisberg, A.S.2    Moss, B.3
  • 49
    • 0034749285 scopus 로고    scopus 로고
    • The vaccinia virus A33R protein provides a chaperone function for viral membrane localization and tyrosine phosphorylation of the A36R protein
    • Wolffe EJ, Weisberg AS, Moss B. 2001. The vaccinia virus A33R protein provides a chaperone function for viral membrane localization and tyrosine phosphorylation of the A36R protein. J. Virol. 75:303-310.
    • (2001) J. Virol. , vol.75 , pp. 303-310
    • Wolffe, E.J.1    Weisberg, A.S.2    Moss, B.3
  • 50
    • 0034468812 scopus 로고    scopus 로고
    • Vaccinia virus F12L protein is required for actin tail formation, normal plaque size, and virulence
    • Zhang WH, Wilcock D, Smith GL. 2000. Vaccinia virus F12L protein is required for actin tail formation, normal plaque size, and virulence. J. Virol. 74:11654-11662.
    • (2000) J. Virol. , vol.74 , pp. 11654-11662
    • Zhang, W.H.1    Wilcock, D.2    Smith, G.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.