메뉴 건너뛰기




Volumn 83, Issue 4, 2009, Pages 1708-1717

Vaccinia virus protein F12 associates with intracellular enveloped virions through an interaction with A36

Author keywords

[No Author keywords available]

Indexed keywords

AMINO ACID; CALNEXIN; UNCLASSIFIED DRUG; VIRUS PROTEIN; VIRUS PROTEIN A36; VIRUS PROTEIN F12;

EID: 59649095042     PISSN: 0022538X     EISSN: None     Source Type: Journal    
DOI: 10.1128/JVI.01364-08     Document Type: Article
Times cited : (26)

References (25)
  • 1
    • 0019887744 scopus 로고
    • Phase separation of integral membrane proteins in Triton X-114 solution
    • Bordier, C. 1981. Phase separation of integral membrane proteins in Triton X-114 solution. J. Biol. Chem. 256:1604-1607.
    • (1981) J. Biol. Chem , vol.256 , pp. 1604-1607
    • Bordier, C.1
  • 2
    • 33846837294 scopus 로고    scopus 로고
    • Amino acid substitutions at multiple sites within the vaccinia virus D13 scaffold protein confer resistance to rifampicin
    • Charity, J. C., E. Katz, and B. Moss. 2007. Amino acid substitutions at multiple sites within the vaccinia virus D13 scaffold protein confer resistance to rifampicin. Virology 359:227-232.
    • (2007) Virology , vol.359 , pp. 227-232
    • Charity, J.C.1    Katz, E.2    Moss, B.3
  • 3
    • 39749143311 scopus 로고    scopus 로고
    • The vaccinia virus B5 protein requires A34 for efficient intracellular trafficking from the endoplasmic reticulum to the site of wrapping and incorporation into progeny virions
    • Earley, A. K., W. M. Chan, and B. M. Ward. 2008. The vaccinia virus B5 protein requires A34 for efficient intracellular trafficking from the endoplasmic reticulum to the site of wrapping and incorporation into progeny virions. J. Virol. 82:2161-2169.
    • (2008) J. Virol , vol.82 , pp. 2161-2169
    • Earley, A.K.1    Chan, W.M.2    Ward, B.M.3
  • 4
    • 0025302978 scopus 로고
    • Transient dominant selection of recombinant vaccinia viruses
    • Falkner, F. G., and B. Moss. 1990. Transient dominant selection of recombinant vaccinia viruses. J. Virol. 64:3108-3111.
    • (1990) J. Virol , vol.64 , pp. 3108-3111
    • Falkner, F.G.1    Moss, B.2
  • 6
    • 0022211611 scopus 로고
    • Golgi-derived membranes that contain an acylated viral polypeptide are used for vaccinia virus envelopment
    • Hiller, G., and K. Weber. 1985. Golgi-derived membranes that contain an acylated viral polypeptide are used for vaccinia virus envelopment. J. Virol. 55:651-659.
    • (1985) J. Virol , vol.55 , pp. 651-659
    • Hiller, G.1    Weber, K.2
  • 8
    • 0001142643 scopus 로고    scopus 로고
    • Poxviridae: The viruses and their replication
    • D. M. Knipe and P. M. Howley ed, 4th ed. Lippincott-Raven Publishers, Philadelphia, PA
    • Moss, B. 2001. Poxviridae: the viruses and their replication, p. 2849-2883. In D. M. Knipe and P. M. Howley (ed.), Fields virology, 4th ed. Lippincott-Raven Publishers, Philadelphia, PA.
    • (2001) Fields virology , pp. 2849-2883
    • Moss, B.1
  • 9
    • 29144519316 scopus 로고    scopus 로고
    • Poxvirus entry and membrane fusion
    • Moss, B. 2006. Poxvirus entry and membrane fusion. Virology 344:48-54.
    • (2006) Virology , vol.344 , pp. 48-54
    • Moss, B.1
  • 10
    • 0019199323 scopus 로고
    • Significance of extracellular enveloped virus in the in vitro and in vivo dissemination of vaccinia
    • Payne, L. G. 1980. Significance of extracellular enveloped virus in the in vitro and in vivo dissemination of vaccinia. J. Gen. Virol. 50:89-100.
    • (1980) J. Gen. Virol , vol.50 , pp. 89-100
    • Payne, L.G.1
  • 11
    • 0028097957 scopus 로고
    • Assembly of vaccinia virus: The second wrapping cisterna is derived from the trans Golgi network
    • Schmelz, M., B. Sodeik, M. Ericsson, E. J. Wolffe, H. Shida, G. Hiller, and G. Griffiths. 1994. Assembly of vaccinia virus: the second wrapping cisterna is derived from the trans Golgi network. J. Virol. 68:130-147.
    • (1994) J. Virol , vol.68 , pp. 130-147
    • Schmelz, M.1    Sodeik, B.2    Ericsson, M.3    Wolffe, E.J.4    Shida, H.5    Hiller, G.6    Griffiths, G.7
  • 12
    • 24944532259 scopus 로고    scopus 로고
    • Cytoplasmic organization of poxvirus DNA replication
    • Schramm, B., and J. K. Locker. 2005. Cytoplasmic organization of poxvirus DNA replication. Traffic 6:839-846.
    • (2005) Traffic , vol.6 , pp. 839-846
    • Schramm, B.1    Locker, J.K.2
  • 13
    • 9644262461 scopus 로고    scopus 로고
    • The exit of vaccinia virus from infected cells
    • Smith, G. L., and M. Law. 2004. The exit of vaccinia virus from infected cells. Virus. Res. 106:189-197.
    • (2004) Virus. Res , vol.106 , pp. 189-197
    • Smith, G.L.1    Law, M.2
  • 15
    • 0036932713 scopus 로고    scopus 로고
    • The formation and function of extracellular enveloped vaccinia virus
    • Smith, G. L., A. Vanderplasschen, and M. Law. 2002. The formation and function of extracellular enveloped vaccinia virus. J. Gen. Virol. 83:2915-2931.
    • (2002) J. Gen. Virol , vol.83 , pp. 2915-2931
    • Smith, G.L.1    Vanderplasschen, A.2    Law, M.3
  • 16
    • 59649105895 scopus 로고    scopus 로고
    • Swaffield, J. C., and S. A. Johnston. 1998. Affinity purification of proteins binding to GST fusion proteins, p. 20.2.1-20.2.10. In F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.), Current protocols in molecular biology, 3. Greene Publishing Associates/Wiley Interscience, New York, NY.
    • Swaffield, J. C., and S. A. Johnston. 1998. Affinity purification of proteins binding to GST fusion proteins, p. 20.2.1-20.2.10. In F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.), Current protocols in molecular biology, vol. 3. Greene Publishing Associates/Wiley Interscience, New York, NY.
  • 17
    • 0027530255 scopus 로고
    • Progeny vaccinia and human cytomegalovirus particles utilize early endosomal cisternae for their envelopes
    • Tooze, J., M. Hollinshead, B. Reis, K. Radsak, and H. Kern. 1993. Progeny vaccinia and human cytomegalovirus particles utilize early endosomal cisternae for their envelopes. Eur. J. Cell Biol. 60:163-178.
    • (1993) Eur. J. Cell Biol , vol.60 , pp. 163-178
    • Tooze, J.1    Hollinshead, M.2    Reis, B.3    Radsak, K.4    Kern, H.5
  • 18
    • 0036135767 scopus 로고    scopus 로고
    • The vaccinia virus F12L protein is associated with intracellular enveloped virus particles and is required for their egress to the cell surface
    • van Eijl, H., M. Hollinshead, G. Rodger, W. H. Zhang, and G. L. Smith. 2002. The vaccinia virus F12L protein is associated with intracellular enveloped virus particles and is required for their egress to the cell surface. J. Gen. Virol. 83:195-207.
    • (2002) J. Gen. Virol , vol.83 , pp. 195-207
    • van Eijl, H.1    Hollinshead, M.2    Rodger, G.3    Zhang, W.H.4    Smith, G.L.5
  • 19
    • 16244407153 scopus 로고    scopus 로고
    • Visualization and characterization of the intracellular movement of vaccinia virus intracellular mature virions
    • Ward, B. M. 2005. Visualization and characterization of the intracellular movement of vaccinia virus intracellular mature virions. J. Virol. 79:4755-4763.
    • (2005) J. Virol , vol.79 , pp. 4755-4763
    • Ward, B.M.1
  • 20
    • 1242274535 scopus 로고    scopus 로고
    • Vaccinia virus A36R membrane protein provides a direct link between intracellular enveloped virions and the microtubule motor kinesin
    • Ward, B. M., and B. Moss. 2004. Vaccinia virus A36R membrane protein provides a direct link between intracellular enveloped virions and the microtubule motor kinesin. J. Virol. 78:2486-2493.
    • (2004) J. Virol , vol.78 , pp. 2486-2493
    • Ward, B.M.1    Moss, B.2
  • 21
    • 0035164017 scopus 로고    scopus 로고
    • Vaccinia virus intracellular movement is associated with microtubules and independent of actin tails
    • Ward, B. M., and B. Moss. 2001. Vaccinia virus intracellular movement is associated with microtubules and independent of actin tails. J. Virol. 75:11651-11663.
    • (2001) J. Virol , vol.75 , pp. 11651-11663
    • Ward, B.M.1    Moss, B.2
  • 22
    • 0035027230 scopus 로고    scopus 로고
    • Visualization of intracellular movement of vaccinia virus virions containing a green fluorescent protein-B5R membrane protein chimera
    • Ward, B. M., and B. Moss. 2001. Visualization of intracellular movement of vaccinia virus virions containing a green fluorescent protein-B5R membrane protein chimera. J. Virol. 75:4802-4813.
    • (2001) J. Virol , vol.75 , pp. 4802-4813
    • Ward, B.M.1    Moss, B.2
  • 23
    • 0037379187 scopus 로고    scopus 로고
    • Mapping and functional analysis of interaction sites within the cytoplasmic domains of the vaccinia virus A33R and A36R envelope proteins
    • Ward, B. M., A. S. Weisberg, and B. Moss. 2003. Mapping and functional analysis of interaction sites within the cytoplasmic domains of the vaccinia virus A33R and A36R envelope proteins. J. Virol. 77:4113-4126.
    • (2003) J. Virol , vol.77 , pp. 4113-4126
    • Ward, B.M.1    Weisberg, A.S.2    Moss, B.3
  • 24
    • 0034749285 scopus 로고    scopus 로고
    • The vaccinia virus A33R protein provides a chaperone function for viral membrane localization and tyrosine phosphorylation of the A36R protein
    • Wolffe, E. J., A. S. Weisberg, and B. Moss. 2001. The vaccinia virus A33R protein provides a chaperone function for viral membrane localization and tyrosine phosphorylation of the A36R protein. J. Virol. 75:303-310.
    • (2001) J. Virol , vol.75 , pp. 303-310
    • Wolffe, E.J.1    Weisberg, A.S.2    Moss, B.3
  • 25
    • 0034468812 scopus 로고    scopus 로고
    • Vaccinia virus F12L protein is required for actin tail formation, normal plaque size, and virulence
    • Zhang, W. H., D. Wilcock, and G. L. Smith. 2000. Vaccinia virus F12L protein is required for actin tail formation, normal plaque size, and virulence. J. Virol. 74:11654-11662.
    • (2000) J. Virol , vol.74 , pp. 11654-11662
    • Zhang, W.H.1    Wilcock, D.2    Smith, G.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.