-
1
-
-
0015130735
-
An antigenic difference between intracellular and extracellular rabbitpox virus
-
Appleyard, G., A. J. Hapel, and E. A. Boulter. 1971. An antigenic difference between intracellular and extracellular rabbitpox virus. J. Gen. Virol. 13:9-17.
-
(1971)
J. Gen. Virol.
, vol.13
, pp. 9-17
-
-
Appleyard, G.1
Hapel, A.J.2
Boulter, E.A.3
-
2
-
-
0026039370
-
Extracellular vaccinia virus formation and cell-to-cell virus transmission are prevented by deletion of the gene encoding the 37,000-dalton outer envelope protein
-
Blasco, R., and B. Moss. 1991. Extracellular vaccinia virus formation and cell-to-cell virus transmission are prevented by deletion of the gene encoding the 37,000-dalton outer envelope protein. J. Virol. 65:5910-5920.
-
(1991)
J. Virol.
, vol.65
, pp. 5910-5920
-
-
Blasco, R.1
Moss, B.2
-
3
-
-
0026625607
-
Role of cell-associated enveloped vaccinia virus in cell-to-cell spread
-
Blasco, R., and B. Moss. 1992. Role of cell-associated enveloped vaccinia virus in cell-to-cell spread. J. Virol. 66:4170-4179.
-
(1992)
J. Virol.
, vol.66
, pp. 4170-4179
-
-
Blasco, R.1
Moss, B.2
-
4
-
-
0344496513
-
The tetratricopeptide repeat: A structural motif mediating protein-protein interactions
-
Blatch, G. L., and M. Lassle. 1999. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays 21:932-939.
-
(1999)
Bioessays
, vol.21
, pp. 932-939
-
-
Blatch, G.L.1
Lassle, M.2
-
5
-
-
0033961288
-
Morphogenesis and release of fowlpox virus
-
Boulanger, D., T. Smith, and M. A. Skinner. 2000. Morphogenesis and release of fowlpox virus. J. Gen. Virol. 81:675-687.
-
(2000)
J. Gen. Virol.
, vol.81
, pp. 675-687
-
-
Boulanger, D.1
Smith, T.2
Skinner, M.A.3
-
6
-
-
0015883378
-
Differences between extracellular and intracellular forms of poxvirus and their implications
-
Boulter, E. A., and G. Appleyard. 1973. Differences between extracellular and intracellular forms of poxvirus and their implications. Prog. Med. Virol. 16:86-108.
-
(1973)
Prog. Med. Virol.
, vol.16
, pp. 86-108
-
-
Boulter, E.A.1
Appleyard, G.2
-
7
-
-
0033712055
-
Kinesin-dependent axonal transport is mediated by the Sunday driver (SYD) protein
-
Bowman, A. B., A. Kamal, B. W. Ritchings, A. V. Philp, M. McGrail, J. G. Gindhart, and L. S. Goldstein. 2000. Kinesin-dependent axonal transport is mediated by the Sunday driver (SYD) protein. Cell 103:583-594.
-
(2000)
Cell
, vol.103
, pp. 583-594
-
-
Bowman, A.B.1
Kamal, A.2
Ritchings, B.W.3
Philp, A.V.4
McGrail, M.5
Gindhart, J.G.6
Goldstein, L.S.7
-
8
-
-
0028866712
-
Actin-based motility of vaccinia virus
-
Cudmore, S., P. Cossart, G. Griffiths, and M. Way. 1995. Actin-based motility of vaccinia virus. Nature 378:636-638.
-
(1995)
Nature
, vol.378
, pp. 636-638
-
-
Cudmore, S.1
Cossart, P.2
Griffiths, G.3
Way, M.4
-
9
-
-
0000332478
-
The development of vaccinia virus in Earle's L strain cells as examined by electron microscopy
-
Dales, S., and L. Siminovitch. 1961. The development of vaccinia virus in Earle's L strain cells as examined by electron microscopy. J. Biophys. Biochem. Cytol. 10:475-503.
-
(1961)
J. Biophys. Biochem. Cytol.
, vol.10
, pp. 475-503
-
-
Dales, S.1
Siminovitch, L.2
-
10
-
-
0032564307
-
The C-terminal region of the stalk domain of ubiquitous human kinesin heavy chain contains the binding site for kinesin light chain
-
Diefenbach, R. J., J. P. Mackay, P. J. Armati, and A. L. Cunningham. 1998. The C-terminal region of the stalk domain of ubiquitous human kinesin heavy chain contains the binding site for kinesin light chain. Biochemistry 37:16663-16670.
-
(1998)
Biochemistry
, vol.37
, pp. 16663-16670
-
-
Diefenbach, R.J.1
Mackay, J.P.2
Armati, P.J.3
Cunningham, A.L.4
-
11
-
-
0026576331
-
Identification and characterization of an extracellular envelope glycoprotein affecting vaccinia virus egress
-
Duncan, S. A., and G. L. Smith. 1992. Identification and characterization of an extracellular envelope glycoprotein affecting vaccinia virus egress. J. Virol. 66:1610-1621.
-
(1992)
J. Virol.
, vol.66
, pp. 1610-1621
-
-
Duncan, S.A.1
Smith, G.L.2
-
12
-
-
0026655115
-
A constitutively expressed vaccinia gene encodes a 42-kDa glycoprotein related to complement control factors that forms part of the extracellular virus envelope
-
Engelstad, M., S. T. Howard, and G. L. Smith. 1992. A constitutively expressed vaccinia gene encodes a 42-kDa glycoprotein related to complement control factors that forms part of the extracellular virus envelope. Virology 188:801-810.
-
(1992)
Virology
, vol.188
, pp. 801-810
-
-
Engelstad, M.1
Howard, S.T.2
Smith, G.L.3
-
13
-
-
0027319075
-
The vaccinia virus 42-kDa envelope protein is required for the envelopment and egress of extracellular virus and for virus virulence
-
Engelstad, M., and G. L. Smith. 1993. The vaccinia virus 42-kDa envelope protein is required for the envelopment and egress of extracellular virus and for virus virulence. Virology 194:627-637.
-
(1993)
Virology
, vol.194
, pp. 627-637
-
-
Engelstad, M.1
Smith, G.L.2
-
14
-
-
0033613455
-
Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling
-
Frischknecht, F., V. Moreau, S. Rottger, S. Gonfloni, I. Reckmann, G. Superti-Furga, and M. Way. 1999. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature 401:926-929.
-
(1999)
Nature
, vol.401
, pp. 926-929
-
-
Frischknecht, F.1
Moreau, V.2
Rottger, S.3
Gonfloni, S.4
Reckmann, I.5
Superti-Furga, G.6
Way, M.7
-
15
-
-
0034772321
-
Movements of vaccinia virus intracellular enveloped virions with GFP tagged to the F13L envelope protein
-
Geada, M. M., I. Galindo, M. M. Lorenzo, B. Perdiguero, and R. Blasco. 2001. Movements of vaccinia virus intracellular enveloped virions with GFP tagged to the F13L envelope protein. J. Gen. Virol. 82:2747-2760.
-
(2001)
J. Gen. Virol.
, vol.82
, pp. 2747-2760
-
-
Geada, M.M.1
Galindo, I.2
Lorenzo, M.M.3
Perdiguero, B.4
Blasco, R.5
-
16
-
-
0014858299
-
Interruption by rifampin of an early stage in vaccinia virus morphogenesis: Accumulation of membranes which are precursors of virus envelopes
-
Grimley, P. M., E. N. Rosenblum, S. J. Mims, and B. Moss. 1970. Interruption by rifampin of an early stage in vaccinia virus morphogenesis: accumulation of membranes which are precursors of virus envelopes. J. Virol. 6:519-533.
-
(1970)
J. Virol.
, vol.6
, pp. 519-533
-
-
Grimley, P.M.1
Rosenblum, E.N.2
Mims, S.J.3
Moss, B.4
-
17
-
-
0018679460
-
Interaction of assembled progeny pox viruses with the cellular cytoskeleton
-
Hiller, G., K. Weber, L. Schneider, C. Parajsz, and C. Jungwirth. 1979. Interaction of assembled progeny pox viruses with the cellular cytoskeleton. Virology 98:142-153.
-
(1979)
Virology
, vol.98
, pp. 142-153
-
-
Hiller, G.1
Weber, K.2
Schneider, L.3
Parajsz, C.4
Jungwirth, C.5
-
18
-
-
0032559260
-
Kinesin and dynein superfamily proteins and the mechanism of organelle transport
-
Hirokawa, N. 1998. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279:519-526.
-
(1998)
Science
, vol.279
, pp. 519-526
-
-
Hirokawa, N.1
-
19
-
-
0022495556
-
Localization and fine structure of a vaccinia virus gene encoding an envelope antigen
-
Hirt, P., G. Hiller, and R. Wittek. 1986. Localization and fine structure of a vaccinia virus gene encoding an envelope antigen. J. Virol. 58:757-764.
-
(1986)
J. Virol.
, vol.58
, pp. 757-764
-
-
Hirt, P.1
Hiller, G.2
Wittek, R.3
-
20
-
-
0035939660
-
Vaccinia virus utilizes microtubules for movement to the cell surface
-
Hollinshead, M., G. Rodger, H. Van Eijl, M. Law, R. Hollinshead, D. J. Vaux, and G. L. Smith. 2001. Vaccinia virus utilizes microtubules for movement to the cell surface. J. Cell Biol. 154:389-402.
-
(2001)
J. Cell Biol.
, vol.154
, pp. 389-402
-
-
Hollinshead, M.1
Rodger, G.2
Van Eijl, H.3
Law, M.4
Hollinshead, R.5
Vaux, D.J.6
Smith, G.L.7
-
21
-
-
0026454214
-
Characterization of a vaccinia virus-encoded 42-kilodalton class I membrane glycoprotein component of the extracellular virus envelope
-
Isaacs, S. N., E. J. Wolffe, L. G. Payne, and B. Moss. 1992. Characterization of a vaccinia virus-encoded 42-kilodalton class I membrane glycoprotein component of the extracellular virus envelope. J. Virol. 66:7217-7224.
-
(1992)
J. Virol.
, vol.66
, pp. 7217-7224
-
-
Isaacs, S.N.1
Wolffe, E.J.2
Payne, L.G.3
Moss, B.4
-
22
-
-
0029655645
-
Vaccinia virus glycoprotein A34R is required for infectivity of extracellular enveloped virus
-
McIntosh, A. A. G., and G. L. Smith. 1996. Vaccinia virus glycoprotein A34R is required for infectivity of extracellular enveloped virus. J. Virol. 70:272-281.
-
(1996)
J. Virol.
, vol.70
, pp. 272-281
-
-
McIntosh, A.A.G.1
Smith, G.L.2
-
23
-
-
0033780474
-
A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization
-
Moreau, V., F. Frischknecht, I. Reckmann, R. Vincentelli, G. Rabut, D. Stewart, and M. Way. 2000. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nat. Cell Biol. 2:441-448.
-
(2000)
Nat. Cell Biol.
, vol.2
, pp. 441-448
-
-
Moreau, V.1
Frischknecht, F.2
Reckmann, I.3
Vincentelli, R.4
Rabut, G.5
Stewart, D.6
Way, M.7
-
24
-
-
0001142643
-
Poxviridae: The viruses and their replication
-
B. N. Fields, D. M. Knipe, and P. M. Howley (ed.). Lippincott-Raven Publishers, Philadelphia, Pa
-
Moss, B. 2001. Poxviridae: the viruses and their replication, p. 2849-2883. In B. N. Fields, D. M. Knipe, and P. M. Howley (ed.), Fields virology, 4th ed., vol. 2. Lippincott-Raven Publishers, Philadelphia, Pa.
-
(2001)
Fields Virology, 4th Ed.
, vol.2
, pp. 2849-2883
-
-
Moss, B.1
-
25
-
-
0027980628
-
r 43-50 K protein on the surface of extracellular enveloped virus
-
r 43-50 K protein on the surface of extracellular enveloped virus. Virology 204:376-390.
-
(1994)
Virology
, vol.204
, pp. 376-390
-
-
Parkinson, J.E.1
Smith, G.L.2
-
26
-
-
0019199323
-
Significance of extracellular enveloped virus in the in vitro and in vivo dissemination of vaccinia
-
Payne, L. G. 1980. Significance of extracellular enveloped virus in the in vitro and in vivo dissemination of vaccinia. J. Gen. Virol. 50:89-100.
-
(1980)
J. Gen. Virol.
, vol.50
, pp. 89-100
-
-
Payne, L.G.1
-
27
-
-
0035736471
-
Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus
-
Rietdorf, J., A. Ploubidou, I. Reckmann, A. Holmstrom, F. Frischknecht, M. Zettl, T. Zimmermann, and M. Way. 2001. Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus. Nat. Cell Biol. 3:992-1000.
-
(2001)
Nat. Cell Biol.
, vol.3
, pp. 992-1000
-
-
Rietdorf, J.1
Ploubidou, A.2
Reckmann, I.3
Holmstrom, A.4
Frischknecht, F.5
Zettl, M.6
Zimmermann, T.7
Way, M.8
-
28
-
-
0036149942
-
Endoplasmic reticulum-Golgi intermediate compartment membranes and vimentin filaments participate in vaccinia virus assembly
-
Risco, C., J. R. Rodriguez, C. López-Iglesias, J. L. Carrascosa, M. Esteban, and D. Rodriguez. 2002. Endoplasmic reticulum-Golgi intermediate compartment membranes and vimentin filaments participate in vaccinia virus assembly. J. Virol. 76:1839-1855.
-
(2002)
J. Virol.
, vol.76
, pp. 1839-1855
-
-
Risco, C.1
Rodriguez, J.R.2
López-Iglesias, C.3
Carrascosa, J.L.4
Esteban, M.5
Rodriguez, D.6
-
29
-
-
0029994032
-
Extracellular vaccinia virus envelope glycoprotein encoded by the A33R gene
-
Roper, R. L., L. G. Payne, and B. Moss. 1996. Extracellular vaccinia virus envelope glycoprotein encoded by the A33R gene. J. Virol. 70:3753-3762.
-
(1996)
J. Virol.
, vol.70
, pp. 3753-3762
-
-
Roper, R.L.1
Payne, L.G.2
Moss, B.3
-
30
-
-
0031958096
-
The envelope protein encoded by the A33R gene is required for formation of actin-containing microvilli and efficient cell-to-cell spread of vaccinia virus
-
Roper, R. L., E. J. Wolffe, A. Weisberg, and B. Moss. 1998. The envelope protein encoded by the A33R gene is required for formation of actin-containing microvilli and efficient cell-to-cell spread of vaccinia virus. J. Virol. 72:4192-4204.
-
(1998)
J. Virol.
, vol.72
, pp. 4192-4204
-
-
Roper, R.L.1
Wolffe, E.J.2
Weisberg, A.3
Moss, B.4
-
31
-
-
0031806239
-
Roles of vaccinia virus EEV-specific proteins in intracellular actin tail formation and low pH-induced cell-cell fusion
-
Sanderson, C. M., F. Frischknecht, M. Way, M. Hollinshead, and G. L. Smith. 1998. Roles of vaccinia virus EEV-specific proteins in intracellular actin tail formation and low pH-induced cell-cell fusion. J. Gen. Virol. 79:1415-1425.
-
(1998)
J. Gen. Virol.
, vol.79
, pp. 1415-1425
-
-
Sanderson, C.M.1
Frischknecht, F.2
Way, M.3
Hollinshead, M.4
Smith, G.L.5
-
32
-
-
0035232322
-
Three-hybrid screens. Inducible third-party systems
-
Sandrock, B., F. Tirode, and J. M. Egly. 2001. Three-hybrid screens. Inducible third-party systems. Methods Mol. Biol. 177:271-289.
-
(2001)
Methods Mol. Biol.
, vol.177
, pp. 271-289
-
-
Sandrock, B.1
Tirode, F.2
Egly, J.M.3
-
33
-
-
0037197805
-
Grb2 and Nck act cooperatively to promote actin-based motility of vaccinia virus
-
Scaplehorn, N., A. Holmstrom, V. Moreau, F. Frischknecht, I. Reckmann, and M. Way. 2002. Grb2 and Nck act cooperatively to promote actin-based motility of vaccinia virus. Curr. Biol. 12:740-745.
-
(2002)
Curr. Biol.
, vol.12
, pp. 740-745
-
-
Scaplehorn, N.1
Holmstrom, A.2
Moreau, V.3
Frischknecht, F.4
Reckmann, I.5
Way, M.6
-
34
-
-
0028097957
-
Assembly of vaccinia virus: The second wrapping cisterna is derived from the trans Golgi network
-
Schmelz, M., B. Sodeik, M. Ericsson, E. J. Wolffe, H. Shida, G. Hiller, and G. Griffiths. 1994. Assembly of vaccinia virus: the second wrapping cisterna is derived from the trans Golgi network. J. Virol. 68:130-147.
-
(1994)
J. Virol.
, vol.68
, pp. 130-147
-
-
Schmelz, M.1
Sodeik, B.2
Ericsson, M.3
Wolffe, E.J.4
Shida, H.5
Hiller, G.6
Griffiths, G.7
-
35
-
-
0030922629
-
Kinesin is essential for cell morphogenesis and polarized secretion in Neurospora crassa
-
Seiler, S., F. E. Nargang, G. Steinberg, and M. Schliwa. 1997. Kinesin is essential for cell morphogenesis and polarized secretion in Neurospora crassa. EMBO J. 16:3025-3034.
-
(1997)
EMBO J.
, vol.16
, pp. 3025-3034
-
-
Seiler, S.1
Nargang, F.E.2
Steinberg, G.3
Schliwa, M.4
-
36
-
-
0022625330
-
Nucleotide sequence of the vaccinia virus hemagglutinin gene
-
Shida, H. 1986. Nucleotide sequence of the vaccinia virus hemagglutinin gene. Virology 150:451-462.
-
(1986)
Virology
, vol.150
, pp. 451-462
-
-
Shida, H.1
-
37
-
-
0034307164
-
Mechanisms of viral transport in the cytoplasm
-
Sodeik, B. 2000. Mechanisms of viral transport in the cytoplasm. Trends Microbiol. 8:465-472.
-
(2000)
Trends Microbiol.
, vol.8
, pp. 465-472
-
-
Sodeik, B.1
-
38
-
-
0027180537
-
Assembly of vaccinia virus: Role of the intermediate compartment between the endoplasmic reticulum and the Golgi stacks
-
Sodeik, B., R. W. Doms, M. Ericsson, G. Hiller, C. E. Machamer, W. van't Hof, G. van Meer, B. Moss, and G. Griffiths. 1993. Assembly of vaccinia virus: role of the intermediate compartment between the endoplasmic reticulum and the Golgi stacks. J. Cell Biol. 121:521-541.
-
(1993)
J. Cell Biol.
, vol.121
, pp. 521-541
-
-
Sodeik, B.1
Doms, R.W.2
Ericsson, M.3
Hiller, G.4
Machamer, C.E.5
Van't Hof, W.6
Van Meer, G.7
Moss, B.8
Griffiths, G.9
-
39
-
-
0017067118
-
High-voltage electron microscope study of the release of vaccinia virus from whole cells
-
Stokes, G. V. 1976. High-voltage electron microscope study of the release of vaccinia virus from whole cells. J. Virol. 18:636-643.
-
(1976)
J. Virol.
, vol.18
, pp. 636-643
-
-
Stokes, G.V.1
-
40
-
-
0004270170
-
Affinity purification of proteins binding to GST fusion proteins
-
F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.). Greene Publishing Associates and Wiley Interscience, New York, N.Y.
-
Swaffield, J. C., and S. A. Johnston. 1998. Affinity purification of proteins binding to GST fusion proteins. In F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.), Current protocols in molecular biology, vol. 3. Greene Publishing Associates and Wiley Interscience, New York, N.Y.
-
(1998)
Current Protocols in Molecular Biology
, vol.3
-
-
Swaffield, J.C.1
Johnston, S.A.2
-
41
-
-
0030761092
-
A conditionally expressed third partner stabilizes or prevents the formation of a transcriptional activator in a three-hybrid system
-
Tirode, F., C. Malaguti, F. Romero, R. Attar, J. Camonis, and J. M. Egly. 1997. A conditionally expressed third partner stabilizes or prevents the formation of a transcriptional activator in a three-hybrid system. J. Biol. Chem. 272:22995-22999.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 22995-22999
-
-
Tirode, F.1
Malaguti, C.2
Romero, F.3
Attar, R.4
Camonis, J.5
Egly, J.M.6
-
42
-
-
0027530255
-
Progeny vaccinia and human cytomegalovirus particles utilize early endosomal cisternae for their envelopes
-
Tooze, J., M. Hollinshead, B. Reis, K. Radsak, and H. Kern. 1993. Progeny vaccinia and human cytomegalovirus particles utilize early endosomal cisternae for their envelopes. Eur. J. Cell Biol. 60:163-178.
-
(1993)
Eur. J. Cell Biol.
, vol.60
, pp. 163-178
-
-
Tooze, J.1
Hollinshead, M.2
Reis, B.3
Radsak, K.4
Kern, H.5
-
43
-
-
0021034620
-
Release of vaccinia virus from FL cells infected with the IHD-W strain
-
Tsutsui, K. 1983. Release of vaccinia virus from FL cells infected with the IHD-W strain. J. Electron Microsc. 32:125-140.
-
(1983)
J. Electron Microsc.
, vol.32
, pp. 125-140
-
-
Tsutsui, K.1
-
45
-
-
0036135767
-
The vaccinia virus F12L protein is associated with intracellular enveloped virus particles and is required for their egress to the cell surface
-
van Eijl, H., M. Hollinshead, G. Rodger, W. H. Zhang, and G. L. Smith. 2002. The vaccinia virus F12L protein is associated with intracellular enveloped virus particles and is required for their egress to the cell surface. J. Gen. Virol. 83:195-207.
-
(2002)
J. Gen. Virol.
, vol.83
, pp. 195-207
-
-
Van Eijl, H.1
Hollinshead, M.2
Rodger, G.3
Zhang, W.H.4
Smith, G.L.5
-
46
-
-
0034713248
-
The vaccinia virus A36R protein is a type Ib membrane protein present on intracellular but not extracellular enveloped virus particles
-
van Eijl, H., M. Hollinshead, and G. L. Smith. 2000. The vaccinia virus A36R protein is a type Ib membrane protein present on intracellular but not extracellular enveloped virus particles. Virology 271:26-36.
-
(2000)
Virology
, vol.271
, pp. 26-36
-
-
Van Eijl, H.1
Hollinshead, M.2
Smith, G.L.3
-
47
-
-
0035809914
-
Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules
-
Verhey, K. J., D. Meyer, R. Deehan, J. Blenis, B. J. Schnapp, T. A. Rapoport, and B. Margolis. 2001. Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J. Cell Biol. 152:959-970.
-
(2001)
J. Cell Biol.
, vol.152
, pp. 959-970
-
-
Verhey, K.J.1
Meyer, D.2
Deehan, R.3
Blenis, J.4
Schnapp, B.J.5
Rapoport, T.A.6
Margolis, B.7
-
48
-
-
0035164017
-
Vaccinia virus intracellular movement is associated with microtubules and independent of actin tails
-
Ward, B. M., and B. Moss. 2001. Vaccinia virus intracellular movement is associated with microtubules and independent of actin tails. J. Virol. 75:11651-11663.
-
(2001)
J. Virol.
, vol.75
, pp. 11651-11663
-
-
Ward, B.M.1
Moss, B.2
-
49
-
-
0035027230
-
Visualization of intracellular movement of vaccinia virus virions containing a green fluorescent protein-B5R membrane protein chimera
-
Ward, B. M., and B. Moss. 2001. Visualization of intracellular movement of vaccinia virus virions containing a green fluorescent protein-B5R membrane protein chimera. J. Virol. 75:4802-4813.
-
(2001)
J. Virol.
, vol.75
, pp. 4802-4813
-
-
Ward, B.M.1
Moss, B.2
-
50
-
-
0037379187
-
Mapping and functional analysis of interaction sites within the cytoplasmic domains of the vaccinia virus A33R and A36R envelope proteins
-
Ward, B. M., A. S. Weisberg, and B. Moss. 2003. Mapping and functional analysis of interaction sites within the cytoplasmic domains of the vaccinia virus A33R and A36R envelope proteins. J. Virol. 77:4113-4126.
-
(2003)
J. Virol.
, vol.77
, pp. 4113-4126
-
-
Ward, B.M.1
Weisberg, A.S.2
Moss, B.3
-
51
-
-
0027162408
-
Deletion of the vaccinia virus B5R gene encoding a 42-kilodalton membrane glycoprotein inhibits extracellular virus envelope formation and dissemination
-
Wolffe, E. J., S. N. Isaacs, and B. Moss. 1993. Deletion of the vaccinia virus B5R gene encoding a 42-kilodalton membrane glycoprotein inhibits extracellular virus envelope formation and dissemination. J. Virol. 67:4732-4741.
-
(1993)
J. Virol.
, vol.67
, pp. 4732-4741
-
-
Wolffe, E.J.1
Isaacs, S.N.2
Moss, B.3
-
52
-
-
0031000689
-
The A34R glycoprotein gene is required for induction of specialized actin-containing microvilli and efficient cell-to-cell transmission of vaccinia virus
-
Wolffe, E. J., E. Katz, A. Weisberg, and B. Moss. 1997. The A34R glycoprotein gene is required for induction of specialized actin-containing microvilli and efficient cell-to-cell transmission of vaccinia virus. J. Virol. 71:3904-3915.
-
(1997)
J. Virol.
, vol.71
, pp. 3904-3915
-
-
Wolffe, E.J.1
Katz, E.2
Weisberg, A.3
Moss, B.4
-
53
-
-
0032565358
-
Role for the vaccinia virus A36R outer envelope protein in the formation of virus-tipped actin-containing microvilli and cell-to-cell virus spread
-
Wolffe, E. J., A. S. Weisberg, and B. Moss. 1998. Role for the vaccinia virus A36R outer envelope protein in the formation of virus-tipped actin-containing microvilli and cell-to-cell virus spread. Virology 244:20-26.
-
(1998)
Virology
, vol.244
, pp. 20-26
-
-
Wolffe, E.J.1
Weisberg, A.S.2
Moss, B.3
-
54
-
-
0034749285
-
The vaccinia virus A33R protein provides a chaperone function for viral membrane localization and tyrosine phosphorylation of the A36R protein
-
Wolffe, E. J., A. S. Weisberg, and B. Moss. 2001. The vaccinia virus A33R protein provides a chaperone function for viral membrane localization and tyrosine phosphorylation of the A36R protein. J. Virol. 75:303-310.
-
(2001)
J. Virol.
, vol.75
, pp. 303-310
-
-
Wolffe, E.J.1
Weisberg, A.S.2
Moss, B.3
-
55
-
-
0034468812
-
Vaccinia virus F12L protein is required for actin tail formation, normal plaque size, and virulence
-
Zhang, W.-H., D. Wilcock, and G. L. Smith. 2000. Vaccinia virus F12L protein is required for actin tail formation, normal plaque size, and virulence. J. Virol. 74:11654-11662.
-
(2000)
J. Virol.
, vol.74
, pp. 11654-11662
-
-
Zhang, W.-H.1
Wilcock, D.2
Smith, G.L.3
|