메뉴 건너뛰기




Volumn 456-457, Issue , 2012, Pages 121-129

Modeling and forecasting river flow rate from the Melen Watershed, Turkey

Author keywords

Artificial neural networks; Melen Watershed; Precipitation forecast; River flow rate; SWAT Model

Indexed keywords

BLACK SEA; ISTANBUL; MISSING VALUES; MODELING AND FORECASTING; PRECIPITATION DATA; PRECIPITATION FORECAST; RIVER FLOW; SIMULATED MODEL; SWAT MODEL; TEMPORAL DATA; VALUE ESTIMATION; WATER DEMAND;

EID: 84864370476     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2012.06.031     Document Type: Article
Times cited : (29)

References (58)
  • 1
    • 47249108157 scopus 로고    scopus 로고
    • 2) concentration levels from the Mina Al-Fahal refinery in Oman using artificial neural networks
    • 2) concentration levels from the Mina Al-Fahal refinery in Oman using artificial neural networks. Am J Environ Sci 2008, 4(5):473-481.
    • (2008) Am J Environ Sci , vol.4 , Issue.5 , pp. 473-481
    • Abdul-Wahab, S.A.1    Al-Alawi, S.M.2
  • 2
    • 84755161811 scopus 로고    scopus 로고
    • Feasibility assessment of data-driven models in predicting pollution trends of Omerli Lake, Turkey
    • Akkoyunlu A., Akiner M.E. Feasibility assessment of data-driven models in predicting pollution trends of Omerli Lake, Turkey. Water Resour. Manage. 2010, 24(13):3419-3436.
    • (2010) Water Resour. Manage. , vol.24 , Issue.13 , pp. 3419-3436
    • Akkoyunlu, A.1    Akiner, M.E.2
  • 4
    • 15944366613 scopus 로고    scopus 로고
    • Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data
    • Almasri M.N., Kaluarachchi J.J. Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data. Environ. Model. Softw. 2005, 20(7):851-871.
    • (2005) Environ. Model. Softw. , vol.20 , Issue.7 , pp. 851-871
    • Almasri, M.N.1    Kaluarachchi, J.J.2
  • 5
    • 56449092033 scopus 로고    scopus 로고
    • Estimation of stream channel geometry in Idaho using GIS-derived watershed characteristics
    • Ames D.P., Rafn E.B., Kirk R.V., Crosby B. Estimation of stream channel geometry in Idaho using GIS-derived watershed characteristics. Environ. Model. Softw. 2009, 24:444-448.
    • (2009) Environ. Model. Softw. , vol.24 , pp. 444-448
    • Ames, D.P.1    Rafn, E.B.2    Kirk, R.V.3    Crosby, B.4
  • 7
    • 34250207695 scopus 로고    scopus 로고
    • Future climate scenarios and rainfall-runoff modelling in the Upper Gallego catchment (Spain)
    • Burger C.M., Kolditz O., Fowler H.J., Blenkinsop S. Future climate scenarios and rainfall-runoff modelling in the Upper Gallego catchment (Spain). Environ. Pollut. 2007, 148:842-854.
    • (2007) Environ. Pollut. , vol.148 , pp. 842-854
    • Burger, C.M.1    Kolditz, O.2    Fowler, H.J.3    Blenkinsop, S.4
  • 8
    • 1842578307 scopus 로고    scopus 로고
    • Short-term model of the production of construction aggregates in Taiwan based on artificial neural networks
    • Chang I.C., Hsiao T.Y. Short-term model of the production of construction aggregates in Taiwan based on artificial neural networks. Environ. Sci. Pollut. Res. Int. 2004, 11(2):84-90.
    • (2004) Environ. Sci. Pollut. Res. Int. , vol.11 , Issue.2 , pp. 84-90
    • Chang, I.C.1    Hsiao, T.Y.2
  • 9
    • 0003186730 scopus 로고    scopus 로고
    • Directive 2000/60/EC of the European Parliament and of the Council: establishing a framework for community action in the field of water policy
    • Commission European. Directive 2000/60/EC of the European Parliament and of the Council: establishing a framework for community action in the field of water policy. Off. J. Eur. Commun. 2000, L327:1-72.
    • (2000) Off. J. Eur. Commun. , vol.327 L , pp. 1-72
    • Commission, E.1
  • 10
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • Dawson C.W., Wilby R. An artificial neural network approach to rainfall-runoff modeling. Hydrol. Sci. J. 1998, 43:47-66.
    • (1998) Hydrol. Sci. J. , vol.43 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.2
  • 12
    • 80053588067 scopus 로고    scopus 로고
    • Modelling the rainfall-runoff data of susurluk basin
    • Dorum A., Yarar A., Sevimli M.F., Onucyildiz M. Modelling the rainfall-runoff data of susurluk basin. Expert Syst. Appl. 2010, 37(9):6587-6593.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.9 , pp. 6587-6593
    • Dorum, A.1    Yarar, A.2    Sevimli, M.F.3    Onucyildiz, M.4
  • 13
    • 84864360490 scopus 로고    scopus 로고
    • DSI (State Hydraulic Works)
    • 1/25,000 scale Topographic maps and Vector Maps of the Melen Watershed Area. Ankara, Turkey.
    • DSI (State Hydraulic Works), 2010. 1/25,000 scale Topographic maps and Vector Maps of the Melen Watershed Area. Ankara, Turkey. http://www.dsi.gov.tr.
    • (2010)
  • 14
    • 84864359895 scopus 로고    scopus 로고
    • Better assessment science integrating point and nonpoint sources (BASINS)
    • In: Singh, V.P., Frevert, D.K. (Eds.), Watershed Models. CRC Press, Taylor & Francis Group, Boca Raton, FL, USA
    • Duda, P.B., Kittle, J.L., Donigian, A.S., Kinerson, R.S., 2006. Better assessment science integrating point and nonpoint sources (BASINS). In: Singh, V.P., Frevert, D.K. (Eds.), Watershed Models. CRC Press, Taylor & Francis Group, Boca Raton, FL, USA, p. 653.
    • (2006) , pp. 653
    • Duda, P.B.1    Kittle, J.L.2    Donigian, A.S.3    Kinerson, R.S.4
  • 15
    • 38049074403 scopus 로고    scopus 로고
    • Evaluation of water quality parameters for the Mamasin dam in Aksaray City in the central Anatolian part of Turkey by means of artificial neural networks
    • Elhatip H., Kömür M.A. Evaluation of water quality parameters for the Mamasin dam in Aksaray City in the central Anatolian part of Turkey by means of artificial neural networks. Environ. Geol. 2008, 53(6):1157-1164.
    • (2008) Environ. Geol. , vol.53 , Issue.6 , pp. 1157-1164
    • Elhatip, H.1    Kömür, M.A.2
  • 16
    • 84864359896 scopus 로고    scopus 로고
    • ESBN
    • European Soil Bureau Network European Commission, Office for Official Publications of the European Communities, L-2995 Luxembourg
    • ESBN, 2005. Soil Atlas of Europe. European Soil Bureau Network European Commission, Office for Official Publications of the European Communities, L-2995 Luxembourg, 128pp.
    • (2005) Soil Atlas of Europe , pp. 128
  • 19
    • 0000152448 scopus 로고
    • Forecasting with neural networks: an application using bankruptcy data
    • Fletcher D., Goss E. Forecasting with neural networks: an application using bankruptcy data. Inf. Manage. 1993, 24:159-167.
    • (1993) Inf. Manage. , vol.24 , pp. 159-167
    • Fletcher, D.1    Goss, E.2
  • 20
    • 56349131204 scopus 로고    scopus 로고
    • Comparison of direct and iterative artificial neural network forecast approaches in multi-periodic time series forecasting
    • Hamzacebi C., Akay D., Kutay F. Comparison of direct and iterative artificial neural network forecast approaches in multi-periodic time series forecasting. Expert Syst. Appl. 2009, 36:3839-3844.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 3839-3844
    • Hamzacebi, C.1    Akay, D.2    Kutay, F.3
  • 21
    • 33846436052 scopus 로고    scopus 로고
    • A neural network model based on the multi-stage optimization approach for short-term food price forecasting in China
    • Haofei Z., Guoping X., Fangting Y., Han Y. A neural network model based on the multi-stage optimization approach for short-term food price forecasting in China. Expert Syst. Appl. 2007, 33:347-356.
    • (2007) Expert Syst. Appl. , vol.33 , pp. 347-356
    • Haofei, Z.1    Guoping, X.2    Fangting, Y.3    Han, Y.4
  • 22
    • 25844445994 scopus 로고    scopus 로고
    • Development of ANN-based models to predict the static response and dynamic response of a heat exchanger in a real MVAC system
    • Hu Q., So A.T.P., Tse W.L., Ren Q. Development of ANN-based models to predict the static response and dynamic response of a heat exchanger in a real MVAC system. J. Phys: Conf. Ser. 2005, 23:110-121.
    • (2005) J. Phys: Conf. Ser. , vol.23 , pp. 110-121
    • Hu, Q.1    So, A.T.P.2    Tse, W.L.3    Ren, Q.4
  • 23
    • 77951872732 scopus 로고    scopus 로고
    • An artificial neural network model for rainfall forecasting in Bangkok, Thailand
    • Hung N.Q., Babel M.S., Weesakul S., Tripathi N.K. An artificial neural network model for rainfall forecasting in Bangkok, Thailand. Hydrol. Earth Syst. Sci. 2009, 13:1413-1425.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , pp. 1413-1425
    • Hung, N.Q.1    Babel, M.S.2    Weesakul, S.3    Tripathi, N.K.4
  • 24
    • 14244254089 scopus 로고    scopus 로고
    • Advances in the application of the SWAT model for water resources management
    • Jayakrishnan R., Srinivasan R., Santhi C., Arnold J.G. Advances in the application of the SWAT model for water resources management. Hydrol. Process. 2005, 19(3):749-762.
    • (2005) Hydrol. Process. , vol.19 , Issue.3 , pp. 749-762
    • Jayakrishnan, R.1    Srinivasan, R.2    Santhi, C.3    Arnold, J.G.4
  • 25
    • 0034735692 scopus 로고    scopus 로고
    • Case studies on the use of neural networks in eutrophication modeling
    • Karul C., Soyupak S., Cilesiz A.F., Akbay N., Germen E. Case studies on the use of neural networks in eutrophication modeling. Ecol. Model. 2000, 134(2):145-152.
    • (2000) Ecol. Model. , vol.134 , Issue.2 , pp. 145-152
    • Karul, C.1    Soyupak, S.2    Cilesiz, A.F.3    Akbay, N.4    Germen, E.5
  • 26
    • 0034205581 scopus 로고    scopus 로고
    • Designing neural network architectures for pattern recognition
    • Kubat M. Designing neural network architectures for pattern recognition. Knowled. Eng. Rev. 2000, 15(2):151-170.
    • (2000) Knowled. Eng. Rev. , vol.15 , Issue.2 , pp. 151-170
    • Kubat, M.1
  • 27
    • 0344066275 scopus 로고    scopus 로고
    • Evaluation of the ability of an artificial neural networkmodel to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan
    • Kuo Y.M., Liu C.W., Lin K.H. Evaluation of the ability of an artificial neural networkmodel to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan. Water Res. 2004, 38(1):148-158.
    • (2004) Water Res. , vol.38 , Issue.1 , pp. 148-158
    • Kuo, Y.M.1    Liu, C.W.2    Lin, K.H.3
  • 28
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
    • Maier H.R., Dandy G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Model. Softw. 2000, 15(1):101-124.
    • (2000) Environ. Model. Softw. , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 30
    • 33846622899 scopus 로고    scopus 로고
    • Sounding-derived indices for neural network based short-term thunderstorm and rainfall forecasts
    • Manzato A. Sounding-derived indices for neural network based short-term thunderstorm and rainfall forecasts. Atmos. Res. 2007, 83:349-365.
    • (2007) Atmos. Res. , vol.83 , pp. 349-365
    • Manzato, A.1
  • 31
    • 0018468345 scopus 로고
    • A comparison of three methods for selecting values of input variables in the Analysis of output from a computer code
    • McKay M.D., Beckman R.J., Conover W.J. A comparison of three methods for selecting values of input variables in the Analysis of output from a computer code. Technometrics 1979, 21(2):239-245.
    • (1979) Technometrics , vol.21 , Issue.2 , pp. 239-245
    • McKay, M.D.1    Beckman, R.J.2    Conover, W.J.3
  • 32
    • 11144279949 scopus 로고    scopus 로고
    • Stream flow estimation using spatially distributed rainfall in the Trinity River basin, Texas
    • Moon J., Srinivasan R., Jacobs J.H. Stream flow estimation using spatially distributed rainfall in the Trinity River basin, Texas. Trans. ASAE 2004, 47(5):1445-1451.
    • (2004) Trans. ASAE , vol.47 , Issue.5 , pp. 1445-1451
    • Moon, J.1    Srinivasan, R.2    Jacobs, J.H.3
  • 33
    • 84952096573 scopus 로고
    • Factorial sampling plans for preliminary computational experiments
    • Morris M.D. Factorial sampling plans for preliminary computational experiments. Technometrics 1991, 33(2):161-174.
    • (1991) Technometrics , vol.33 , Issue.2 , pp. 161-174
    • Morris, M.D.1
  • 34
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models part I-a discussion of principles
    • Nash J.E., Sutcliffe J.V. River flow forecasting through conceptual models part I-a discussion of principles. J. Hydrol. 1970, 10(3):282-290.
    • (1970) J. Hydrol. , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 35
    • 84864366040 scopus 로고    scopus 로고
    • Soil and Water Assessment Tool Theoretical Documentation Version 2000, Temple: Grassland, Soil and Water Research Laboratory, Temple, TX and Blackland Research Center, Temple, TX.
    • Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J.R., King, K.W., 2002. Soil and Water Assessment Tool Theoretical Documentation. Version 2000, Temple: Grassland, Soil and Water Research Laboratory, Temple, TX and Blackland Research Center, Temple, TX.
    • (2002)
    • Neitsch, S.L.1    Arnold, J.G.2    Kiniry, J.R.3    Williams, J.R.4    King, K.W.5
  • 36
    • 84864328756 scopus 로고    scopus 로고
    • NOAA National Oceanic and Atmospheric Administration, Düzce and Bolu Meteorological Data. <>.
    • NOAA National Oceanic and Atmospheric Administration, 2010. Düzce and Bolu Meteorological Data. http://www.noaa.gov/.
    • (2010)
  • 37
    • 77951204309 scopus 로고    scopus 로고
    • Comparison of ANN and principal component analysis-multivariate linear regression models for predicting the river flow based on developed discrepancy ratio statistic
    • Noori R., Khakpour A., Omidvar B., Farokhnia A. Comparison of ANN and principal component analysis-multivariate linear regression models for predicting the river flow based on developed discrepancy ratio statistic. Expert Syst. Appl. 2010, 37(8):5856-5862.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.8 , pp. 5856-5862
    • Noori, R.1    Khakpour, A.2    Omidvar, B.3    Farokhnia, A.4
  • 38
    • 36048953707 scopus 로고
    • The Soils of Turkey
    • Food and Agriculture Organization of the United Nations (FAO), Ankara, Turkey.
    • Oakes, H., 1954. The Soils of Turkey. Food and Agriculture Organization of the United Nations (FAO), Ankara, Turkey.
    • (1954)
    • Oakes, H.1
  • 39
    • 84864363923 scopus 로고
    • Insaat Muhendislerine Geoteknik Bilgisi Cilt 1 [In Turkish]
    • Publication No.: 187, Trabzon, Turkey
    • Onalp, A., 1982. Insaat Muhendislerine Geoteknik Bilgisi Cilt 1 [In Turkish]. Karadeniz Technical University. Publication No.: 187, Trabzon, Turkey.
    • (1982) Karadeniz Technical University
    • Onalp, A.1
  • 41
    • 33745933319 scopus 로고    scopus 로고
    • Designing an artificial neural network for forecasting tourism time series
    • Palmer A., Montano J.J., Sese A. Designing an artificial neural network for forecasting tourism time series. Tour. Manage. 2006, 27:781-790.
    • (2006) Tour. Manage. , vol.27 , pp. 781-790
    • Palmer, A.1    Montano, J.J.2    Sese, A.3
  • 42
    • 48649085521 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data using wavelet-neural networks
    • Partal T., Cigizoglu H.K. Estimation and forecasting of daily suspended sediment data using wavelet-neural networks. J. Hydrol. 2008, 358(3-4):317-331.
    • (2008) J. Hydrol. , vol.358 , Issue.3-4 , pp. 317-331
    • Partal, T.1    Cigizoglu, H.K.2
  • 43
    • 84864328750 scopus 로고    scopus 로고
    • Duzce ovasi sulama isletmesinde optimum su kullanim modelinin belirlenmesi uzerine bir arastirma [In Turkish]. PhD Dissertation. Gazi University, Institute of Science and Technology, Department of Construction, Ankara, Turkey.
    • Polat, A.H., 2000. Duzce ovasi sulama isletmesinde optimum su kullanim modelinin belirlenmesi uzerine bir arastirma [In Turkish]. PhD Dissertation. Gazi University, Institute of Science and Technology, Department of Construction, Ankara, Turkey.
    • (2000)
    • Polat, A.H.1
  • 44
    • 10644287862 scopus 로고    scopus 로고
    • Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region
    • Ramirez M.C.V., Velho H.F.de C., Ferreira N.J. Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region. J. Hydrol. 2005, 301:146-162.
    • (2005) J. Hydrol. , vol.301 , pp. 146-162
    • Ramirez, M.C.V.1    Velho, H.F.D.C.2    Ferreira, N.J.3
  • 47
    • 76149144598 scopus 로고    scopus 로고
    • Hydrological modelling in the Lake Tana Basin, Ethiopia using SWAT model
    • Setegn S.G., Srinivasan R., Dargahi B. Hydrological modelling in the Lake Tana Basin, Ethiopia using SWAT model. Open Hydrol. J. 2008, 2:49-62.
    • (2008) Open Hydrol. J. , vol.2 , pp. 49-62
    • Setegn, S.G.1    Srinivasan, R.2    Dargahi, B.3
  • 48
    • 77952290338 scopus 로고    scopus 로고
    • A comparative study of daily pan evaporation estimation using ANN, regression and climate based models
    • Shirsath P.B., Singh A.K. A comparative study of daily pan evaporation estimation using ANN, regression and climate based models. Water Resour. Manage 2009, 24(8):1571-1581.
    • (2009) Water Resour. Manage , vol.24 , Issue.8 , pp. 1571-1581
    • Shirsath, P.B.1    Singh, A.K.2
  • 49
    • 34548184958 scopus 로고    scopus 로고
    • Introduction to Neural Networks Using Matlab
    • 6.0, first ed. Tata MCGraw Hill, OH, USA (656pp)
    • Sivanandam, S.N., Sumathi, S., Deepa, S.N., 2006. Introduction to Neural Networks Using Matlab. 6.0, first ed. Tata MCGraw Hill, OH, USA, pp. 367-372 (656pp).
    • (2006) , pp. 367-372
    • Sivanandam, S.N.1    Sumathi, S.2    Deepa, S.N.3
  • 51
    • 33644636765 scopus 로고    scopus 로고
    • A comparative analysis of training methods for artificial neural network rainfall-runoff models
    • Srinivasulu S., Jain A. A comparative analysis of training methods for artificial neural network rainfall-runoff models. Appl. Soft Comput. 2006, 6:295-306.
    • (2006) Appl. Soft Comput. , vol.6 , pp. 295-306
    • Srinivasulu, S.1    Jain, A.2
  • 52
    • 0344035546 scopus 로고    scopus 로고
    • Evaluation of neural networks for modeling nitrate concentrations in streams
    • Suen J.P., Eheart J.W. Evaluation of neural networks for modeling nitrate concentrations in streams. J. Water Resour. Plann. Manage. 2003, 129(6):505-510.
    • (2003) J. Water Resour. Plann. Manage. , vol.129 , Issue.6 , pp. 505-510
    • Suen, J.P.1    Eheart, J.W.2
  • 53
    • 33751081243 scopus 로고    scopus 로고
    • ANN and fuzzy logic models for simulating event-based rainfall-runoff
    • Tayfur G., Singh V.P. ANN and fuzzy logic models for simulating event-based rainfall-runoff. J. Hydraul. Eng. ASCE 2006, 132(12):1321-1330.
    • (2006) J. Hydraul. Eng. ASCE , vol.132 , Issue.12 , pp. 1321-1330
    • Tayfur, G.1    Singh, V.P.2
  • 54
    • 34247466894 scopus 로고    scopus 로고
    • Model for forecasting expressway fine particulate matter and carbon monoxide concentration: application of regression and neural network models
    • Thomas S., Jacko R.B. Model for forecasting expressway fine particulate matter and carbon monoxide concentration: application of regression and neural network models. J. Air Waste Manag. Assoc. 2007, 57:480-488.
    • (2007) J. Air Waste Manag. Assoc. , vol.57 , pp. 480-488
    • Thomas, S.1    Jacko, R.B.2
  • 55
    • 84864366036 scopus 로고    scopus 로고
    • TMS Turkish Meteorological Data Archive System
    • Turkish State Meteorological Service. <>
    • TMS Turkish Meteorological Data Archive System, 2010. Düzce and Bolu Meteorological Data. Turkish State Meteorological Service. http://www.dmi.gov.tr/index.aspx.
    • Düzce and Bolu Meteorological Data
  • 56
    • 33947171376 scopus 로고
    • USDA SCS (U.S. Department of Agriculture-Soil Conservation Service)
    • Part 630 Hydrology, Section 4, U.S. Government Printing Office, Washington, DC
    • USDA SCS (U.S. Department of Agriculture-Soil Conservation Service), 1972. National Engineering Handbook. Part 630 Hydrology, Section 4, U.S. Government Printing Office, Washington, DC.
    • (1972) National Engineering Handbook
  • 58
    • 53649095792 scopus 로고    scopus 로고
    • ArcSWAT Interface for SWAT2005 - User's Guide
    • Blackland Research Center, Texas Agricultural Experiment Station and Grassland, Soil and Water Research Laboratory, USDA Agricultural Research Service, Temple, Texas.
    • Winchell, M., Srinivasan, R., Di Luzio, M., Arnold, J., 2009. ArcSWAT Interface for SWAT2005 - User's Guide. Blackland Research Center, Texas Agricultural Experiment Station and Grassland, Soil and Water Research Laboratory, USDA Agricultural Research Service, Temple, Texas.
    • (2009)
    • Winchell, M.1    Srinivasan, R.2    Di Luzio, M.3    Arnold, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.