메뉴 건너뛰기




Volumn 27, Issue 5, 2006, Pages 781-790

Designing an artificial neural network for forecasting tourism time series

Author keywords

Neural networks; Tourism forecasting

Indexed keywords

ARTIFICIAL NEURAL NETWORK; FORECASTING METHOD; NETWORK DESIGN; TIME SERIES ANALYSIS; TOURISM MANAGEMENT;

EID: 33745933319     PISSN: None     EISSN: 02615177     Source Type: Journal    
DOI: 10.1016/j.tourman.2005.05.006     Document Type: Article
Times cited : (223)

References (68)
  • 1
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • Baum E.B., and Haussler D. What size net gives valid generalization?. Neural Computation 1 1 (1989) 151-160
    • (1989) Neural Computation , vol.1 , Issue.1 , pp. 151-160
    • Baum, E.B.1    Haussler, D.2
  • 4
    • 0036991584 scopus 로고    scopus 로고
    • The sequencing of neural networks for segmenting the market of a tourist destination
    • Bloom J.Z. The sequencing of neural networks for segmenting the market of a tourist destination. Tourism 50 4 (2002) 325-338
    • (2002) Tourism , vol.50 , Issue.4 , pp. 325-338
    • Bloom, J.Z.1
  • 5
    • 17244369342 scopus 로고    scopus 로고
    • Tourist market segmentation with linear and non-linear techniques
    • Bloom J.Z. Tourist market segmentation with linear and non-linear techniques. Tourism Management 25 (2004) 723-733
    • (2004) Tourism Management , vol.25 , pp. 723-733
    • Bloom, J.Z.1
  • 6
    • 14544293986 scopus 로고    scopus 로고
    • Market segmentation: A neural network application
    • Bloom J.Z. Market segmentation: A neural network application. Annals of Tourism Research 32 1 (2005) 93-111
    • (2005) Annals of Tourism Research , vol.32 , Issue.1 , pp. 93-111
    • Bloom, J.Z.1
  • 9
    • 0035021368 scopus 로고    scopus 로고
    • A practitioners guide to time-series methods for tourism deman forecasting: A case study of Durban, South Africa
    • Burger C., Dohnal M., Kathrada M., and Law R. A practitioners guide to time-series methods for tourism deman forecasting: A case study of Durban, South Africa. Tourism Management 22 (2001) 403-409
    • (2001) Tourism Management , vol.22 , pp. 403-409
    • Burger, C.1    Dohnal, M.2    Kathrada, M.3    Law, R.4
  • 10
    • 0026954346 scopus 로고
    • Forecasting the behavior of multivariate time series using neural networks
    • Chakraborty K., Mehrotra K., Mohan C.K., and Ranka S. Forecasting the behavior of multivariate time series using neural networks. Neural Networks 5 (1992) 961-970
    • (1992) Neural Networks , vol.5 , pp. 961-970
    • Chakraborty, K.1    Mehrotra, K.2    Mohan, C.K.3    Ranka, S.4
  • 11
    • 33745939162 scopus 로고    scopus 로고
    • Applications of multivariate analysis in international tourism research: The marketing strategy perspective of NTOs
    • Chandra S., and Menezes D. Applications of multivariate analysis in international tourism research: The marketing strategy perspective of NTOs. Journal of Economic and Social Research 3 1 (2001) 77-98
    • (2001) Journal of Economic and Social Research , vol.3 , Issue.1 , pp. 77-98
    • Chandra, S.1    Menezes, D.2
  • 12
    • 0041813336 scopus 로고    scopus 로고
    • A comparison of three different approaches to tourist arrival forecasting
    • Cho V. A comparison of three different approaches to tourist arrival forecasting. Tourism Management 24 (2003) 323-330
    • (2003) Tourism Management , vol.24 , pp. 323-330
    • Cho, V.1
  • 13
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G. Approximation by superpositions of a sigmoidal function. Mathematical Control, Signal and Systems 2 (1989) 303-314
    • (1989) Mathematical Control, Signal and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 14
    • 84966609172 scopus 로고    scopus 로고
    • Behavioural market segments among surf tourists: Investigating past destination choice
    • Dolnicar S., and Fluker M. Behavioural market segments among surf tourists: Investigating past destination choice. Journal of Sport Tourism 8 3 (2003) 186-196
    • (2003) Journal of Sport Tourism , vol.8 , Issue.3 , pp. 186-196
    • Dolnicar, S.1    Fluker, M.2
  • 15
    • 33745941790 scopus 로고    scopus 로고
    • Fahlman, S. E. (1988).Faster-learning variations on back-propagation: An empirical study. In: Touretsky, D., Hinton, G. E., Sejnowski, T. J. (Eds.), Proceedings of the 1988 connectionist models summer school. (pp. 38-51). San Mateo: Morgan Kaufmann.
  • 17
    • 33745957412 scopus 로고    scopus 로고
    • Franses, P.H., & Draisma, G. (1995). Recognizing changing seasonal patterns using artificial neural networks. Working paper, Economic Institute, Erasmus University Rotterdam.
  • 18
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • Funahashi K. On the approximate realization of continuous mappings by neural networks. Neural Networks 2 (1989) 183-192
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 19
    • 33745935413 scopus 로고    scopus 로고
    • K-means vs. topology representing networks: Comparing ease of use for gaining optimal results with reference to data input order
    • Ganglmair A., and Wooliscroft B. K-means vs. topology representing networks: Comparing ease of use for gaining optimal results with reference to data input order. Tourism Analysis 5 (2000) 157-162
    • (2000) Tourism Analysis , vol.5 , pp. 157-162
    • Ganglmair, A.1    Wooliscroft, B.2
  • 20
    • 0003053374 scopus 로고
    • Research prospective on neural network forecasting
    • Gorr W.L. Research prospective on neural network forecasting. International Journal of Forecasting 10 (1994) 1-4
    • (1994) International Journal of Forecasting , vol.10 , pp. 1-4
    • Gorr, W.L.1
  • 21
    • 0032599451 scopus 로고    scopus 로고
    • Time series prediction with genetic-algorithm designed neural networks: An empirical comparison with modern statistical models
    • Hansen J.V., McDonald J.B., and Nelson R.D. Time series prediction with genetic-algorithm designed neural networks: An empirical comparison with modern statistical models. Computational Intelligence 15 3 (1999) 171-184
    • (1999) Computational Intelligence , vol.15 , Issue.3 , pp. 171-184
    • Hansen, J.V.1    McDonald, J.B.2    Nelson, R.D.3
  • 22
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., and White H. Multilayer feedforward networks are universal approximators. Neural Networks 2 5 (1989) 359-366
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 23
    • 0347029829 scopus 로고    scopus 로고
    • Regional development policies: An assessment of their evolution and effects on the Spanish tourist model
    • Ivars J.A. Regional development policies: An assessment of their evolution and effects on the Spanish tourist model. Tourism Management 24 (2003) 655-663
    • (2003) Tourism Management , vol.24 , pp. 655-663
    • Ivars, J.A.1
  • 25
    • 16444367227 scopus 로고
    • Trading techniques: The care and feeding of a neural network
    • Jurik M. Trading techniques: The care and feeding of a neural network. Futures: the Magazine of Commodities & Options 21 12 (1992) 40-44
    • (1992) Futures: the Magazine of Commodities & Options , vol.21 , Issue.12 , pp. 40-44
    • Jurik, M.1
  • 26
    • 0009778254 scopus 로고    scopus 로고
    • An explanation and illustration of cluster analysis for identifying hospitality market segments
    • Jurowski C., and Reich A.Z. An explanation and illustration of cluster analysis for identifying hospitality market segments. Journal of Hospitality and Tourism Research 24 1 (2000) 67-91
    • (2000) Journal of Hospitality and Tourism Research , vol.24 , Issue.1 , pp. 67-91
    • Jurowski, C.1    Reich, A.Z.2
  • 27
    • 0030130753 scopus 로고    scopus 로고
    • Designing a neural network for forecasting financial and economic time series
    • Kaastra I., and Boyd M. Designing a neural network for forecasting financial and economic time series. Neurocomputing 10 (1996) 215-236
    • (1996) Neurocomputing , vol.10 , pp. 215-236
    • Kaastra, I.1    Boyd, M.2
  • 28
    • 33745965095 scopus 로고    scopus 로고
    • Kang, S. (1991). An investigation of the use of feedforward neural networks for forecasting. Unpublished Doctoral thesis, Kent State University.
  • 29
    • 0037310413 scopus 로고    scopus 로고
    • Segmenting the market of West Australian senior tourists using an artificial neural network
    • Kim J., Wei S., and Ruys H. Segmenting the market of West Australian senior tourists using an artificial neural network. Tourism Management 24 (2003) 25-34
    • (2003) Tourism Management , vol.24 , pp. 25-34
    • Kim, J.1    Wei, S.2    Ruys, H.3
  • 30
    • 79751535866 scopus 로고
    • Time series forecasting using neural networks
    • Kolarik T., and Rudorfer G. Time series forecasting using neural networks. APL Quote Quad 25 1 (1994) 86-94
    • (1994) APL Quote Quad , vol.25 , Issue.1 , pp. 86-94
    • Kolarik, T.1    Rudorfer, G.2
  • 32
    • 0034057701 scopus 로고    scopus 로고
    • Back-propagation learning in improving the accuracy of neural network-based tourism demand forecasting
    • Law R. Back-propagation learning in improving the accuracy of neural network-based tourism demand forecasting. Tourism Management 21 (2000) 331-340
    • (2000) Tourism Management , vol.21 , pp. 331-340
    • Law, R.1
  • 33
    • 0010413830 scopus 로고    scopus 로고
    • Demand for hotel spending by visitors to Hong Kong: A study of various forecasting techniques
    • Law R. Demand for hotel spending by visitors to Hong Kong: A study of various forecasting techniques. Journal of Hospitality & Leisure Marketing 6 4 (2000) 17-29
    • (2000) Journal of Hospitality & Leisure Marketing , vol.6 , Issue.4 , pp. 17-29
    • Law, R.1
  • 34
    • 27344440715 scopus 로고    scopus 로고
    • The impact of the Asian financial crisis on Japanese demand for travel to Hong Kong: a study of various forecasting techniques
    • Law R. The impact of the Asian financial crisis on Japanese demand for travel to Hong Kong: a study of various forecasting techniques. Journal of Travel & Tourism Marketing 10 2-3 (2001) 47-66
    • (2001) Journal of Travel & Tourism Marketing , vol.10 , Issue.2-3 , pp. 47-66
    • Law, R.1
  • 35
    • 0032997601 scopus 로고    scopus 로고
    • A neural network model to forecast Japanese demand for travel to Hong Kong
    • Law R., and Au N. A neural network model to forecast Japanese demand for travel to Hong Kong. Tourism Management 20 (1999) 89-97
    • (1999) Tourism Management , vol.20 , pp. 89-97
    • Law, R.1    Au, N.2
  • 36
    • 0036079138 scopus 로고    scopus 로고
    • Time series forecasts of international travel demand for Australia
    • Lim C., and McAleer M. Time series forecasts of international travel demand for Australia. Tourism Management 23 (2002) 389-396
    • (2002) Tourism Management , vol.23 , pp. 389-396
    • Lim, C.1    McAleer, M.2
  • 37
    • 0003771244 scopus 로고
    • Neural networks prediction and fault diagnosis applied to stationary and non-stationary ARMA modeled time series
    • Marseguerra M., Minoggio S., Rossi A., and Zio E. Neural networks prediction and fault diagnosis applied to stationary and non-stationary ARMA modeled time series. Progress in Nuclear Energy 27 1 (1992) 25-36
    • (1992) Progress in Nuclear Energy , vol.27 , Issue.1 , pp. 25-36
    • Marseguerra, M.1    Minoggio, S.2    Rossi, A.3    Zio, E.4
  • 40
    • 84951558914 scopus 로고
    • Classifying tourists into market segments: A neural network approach
    • Mazanec J.A. Classifying tourists into market segments: A neural network approach. Journal of Travel and Tourism Marketing 1 1 (1992) 39-59
    • (1992) Journal of Travel and Tourism Marketing , vol.1 , Issue.1 , pp. 39-59
    • Mazanec, J.A.1
  • 41
    • 58149322940 scopus 로고
    • Positioning analysis with self-organizing maps: A exploratory study on luxury hotels
    • Mazanec J.A. Positioning analysis with self-organizing maps: A exploratory study on luxury hotels. Cornell Hotel and Restaurant Administration Quarterly 36 6 (1995) 80-95
    • (1995) Cornell Hotel and Restaurant Administration Quarterly , vol.36 , Issue.6 , pp. 80-95
    • Mazanec, J.A.1
  • 42
    • 0040320136 scopus 로고    scopus 로고
    • Simultaneous positioning and segmentation analysis with topologically ordered feature maps: A tour operator example
    • Mazanec J.A. Simultaneous positioning and segmentation analysis with topologically ordered feature maps: A tour operator example. Journal of Retailing and Consumer Services 6 (1999) 219-235
    • (1999) Journal of Retailing and Consumer Services , vol.6 , pp. 219-235
    • Mazanec, J.A.1
  • 43
    • 33745948153 scopus 로고    scopus 로고
    • Predictability of hunting: A logistic regression analysis of western Canadian hunters
    • Mitchell R.E. Predictability of hunting: A logistic regression analysis of western Canadian hunters. Crossing Boundaries 1 1 (2001) 107-117
    • (2001) Crossing Boundaries , vol.1 , Issue.1 , pp. 107-117
    • Mitchell, R.E.1
  • 44
    • 0010379493 scopus 로고    scopus 로고
    • Perceptions of the northern territory by travel agents in Kuala Lumpur
    • Mohsin A., and Ryan C. Perceptions of the northern territory by travel agents in Kuala Lumpur. Asia Pacific Journal of Tourism Research 3 2 (1999) 41-46
    • (1999) Asia Pacific Journal of Tourism Research , vol.3 , Issue.2 , pp. 41-46
    • Mohsin, A.1    Ryan, C.2
  • 45
    • 0344961870 scopus 로고    scopus 로고
    • Numeric sensitivity analysis applied to feedforward neural networks
    • Montaño J.J., and Palmer A. Numeric sensitivity analysis applied to feedforward neural networks. Neural Computing & Applications 12 (2003) 119-125
    • (2003) Neural Computing & Applications , vol.12 , pp. 119-125
    • Montaño, J.J.1    Palmer, A.2
  • 46
    • 0034055719 scopus 로고    scopus 로고
    • Demand modelling methodologies: Integration and other issues
    • Morley C. Demand modelling methodologies: Integration and other issues. Tourism Economics 6 1 (2000) 5-19
    • (2000) Tourism Economics , vol.6 , Issue.1 , pp. 5-19
    • Morley, C.1
  • 47
    • 0000902316 scopus 로고    scopus 로고
    • Time series forecasting using neural networks: Should the data be deseasonalized first?
    • Nelson M., Hill T., Remus W., and O'Connor M. Time series forecasting using neural networks: Should the data be deseasonalized first?. Journal of Forecasting 18 (1999) 359-367
    • (1999) Journal of Forecasting , vol.18 , pp. 359-367
    • Nelson, M.1    Hill, T.2    Remus, W.3    O'Connor, M.4
  • 48
    • 0345768704 scopus 로고    scopus 로고
    • Tourism and environmental taxes. With special reference to the "Balearic ecotax"
    • Palmer T., and Riera A. Tourism and environmental taxes. With special reference to the "Balearic ecotax". Tourism Management 24 (2003) 665-674
    • (2003) Tourism Management , vol.24 , pp. 665-674
    • Palmer, T.1    Riera, A.2
  • 49
    • 0029728751 scopus 로고    scopus 로고
    • Using a neural network to forecast visitor behavior
    • Pattie D.C., and Snyder J. Using a neural network to forecast visitor behavior. Annals of Tourism Research 23 1 (1996) 151-164
    • (1996) Annals of Tourism Research , vol.23 , Issue.1 , pp. 151-164
    • Pattie, D.C.1    Snyder, J.2
  • 50
    • 0033028925 scopus 로고    scopus 로고
    • Structural equation modeling with Lisrel: Application in tourism
    • Reisinger Y., and Turner L. Structural equation modeling with Lisrel: Application in tourism. Tourism Management 20 (1999) 71-88
    • (1999) Tourism Management , vol.20 , pp. 71-88
    • Reisinger, Y.1    Turner, L.2
  • 52
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • Rumelhart D.E., and McClelland J.L. (Eds), MIT Press, Cambridge, MA
    • Rumelhart D.E., Hinton G.E., and Williams R.J. Learning internal representations by error propagation. In: Rumelhart D.E., and McClelland J.L. (Eds). Parallel distributed processing (1986), MIT Press, Cambridge, MA 318-362
    • (1986) Parallel distributed processing , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 54
    • 33745953005 scopus 로고    scopus 로고
    • Sarle, W.S. (2002). Neural network FAQ. Retrieved 11 February 2003, from ftp://ftp.sas.com/pub/neural/FAQ.html.
  • 55
    • 84984526179 scopus 로고
    • Tourism forecasting: A review of empirical research
    • Sheldon P.J., and Var T. Tourism forecasting: A review of empirical research. Journal of Forecasting 4 2 (1985) 183-195
    • (1985) Journal of Forecasting , vol.4 , Issue.2 , pp. 183-195
    • Sheldon, P.J.1    Var, T.2
  • 58
    • 0006736447 scopus 로고    scopus 로고
    • SPSS Inc, SPSS Inc, Chicago
    • SPSS Inc. Neural Connection 2.1 (1998), SPSS Inc, Chicago
    • (1998) Neural Connection 2.1
  • 59
    • 0026258339 scopus 로고
    • Time series forecasting using neural networks vs. Box-Jenkins methodology
    • Tang Z., Almeida C., and Fishwick P.A. Time series forecasting using neural networks vs. Box-Jenkins methodology. Simulation 57 5 (1991) 303-310
    • (1991) Simulation , vol.57 , Issue.5 , pp. 303-310
    • Tang, Z.1    Almeida, C.2    Fishwick, P.A.3
  • 60
    • 0000393458 scopus 로고
    • Feedforward neural nets as models for time series forecasting
    • Tang Z., and Fishwick P.A. Feedforward neural nets as models for time series forecasting. ORSA Journal on Computing 5 4 (1993) 374-385
    • (1993) ORSA Journal on Computing , vol.5 , Issue.4 , pp. 374-385
    • Tang, Z.1    Fishwick, P.A.2
  • 61
    • 0036079147 scopus 로고    scopus 로고
    • Determinants of guest loyalty to international tourist hotels: A neural network approach
    • Tsaur S.H., Chiu Y.C., and Huang C.H. Determinants of guest loyalty to international tourist hotels: A neural network approach. Tourism Management 23 (2002) 397-405
    • (2002) Tourism Management , vol.23 , pp. 397-405
    • Tsaur, S.H.1    Chiu, Y.C.2    Huang, C.H.3
  • 62
    • 0033429643 scopus 로고    scopus 로고
    • Artificial neural networks versus multiple regression in tourism demand analysis
    • Uysal M., and El Roubi M.S. Artificial neural networks versus multiple regression in tourism demand analysis. Journal of Travel Research 38 (1999) 111-118
    • (1999) Journal of Travel Research , vol.38 , pp. 111-118
    • Uysal, M.1    El Roubi, M.S.2
  • 63
    • 33745962656 scopus 로고    scopus 로고
    • Intelligent one-stop-shop travel recommendations using an adaptive neural network and clustering of history
    • Wallace M., Maglogiannis I., Karpouzis K., Kormentzas G., and Kollias S. Intelligent one-stop-shop travel recommendations using an adaptive neural network and clustering of history. Information Technology & Tourism 6 3 (2003) 181-194
    • (2003) Information Technology & Tourism , vol.6 , Issue.3 , pp. 181-194
    • Wallace, M.1    Maglogiannis, I.2    Karpouzis, K.3    Kormentzas, G.4    Kollias, S.5
  • 64
    • 2342587536 scopus 로고    scopus 로고
    • Predicting tourism demand using fuzzy time series and hybrid grey theory
    • Wang C.H. Predicting tourism demand using fuzzy time series and hybrid grey theory. Tourism Management 25 (2004) 367-374
    • (2004) Tourism Management , vol.25 , pp. 367-374
    • Wang, C.H.1
  • 66
    • 0031283672 scopus 로고    scopus 로고
    • A comparative analysis of neural networks and statistical methods for predicting consumer choice
    • West P.M., Brockett P.L., and Golden L.L. A comparative analysis of neural networks and statistical methods for predicting consumer choice. Marketing Science 16 4 (1997) 370-391
    • (1997) Marketing Science , vol.16 , Issue.4 , pp. 370-391
    • West, P.M.1    Brockett, P.L.2    Golden, L.L.3
  • 68
    • 0001609105 scopus 로고
    • Forecasting tourism demand: A review of empirical research
    • Witt S.F., and Witt C.A. Forecasting tourism demand: A review of empirical research. International Journal of Forecasting 11 3 (1995) 447-475
    • (1995) International Journal of Forecasting , vol.11 , Issue.3 , pp. 447-475
    • Witt, S.F.1    Witt, C.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.