메뉴 건너뛰기




Volumn , Issue , 2012, Pages 359-364

Efficient FDC based on hierarchical tool condition monitoring scheme

Author keywords

Fault Detection and Classification (FDC); generalized variance; moving variance and covariance; principal component analysis; tool condition hierarchy

Indexed keywords

EXTERNAL SENSORS; FAULT DETECTION AND CLASSIFICATION; FAULT IDENTIFICATIONS; GENERALIZED VARIANCE; HIERARCHICAL TOOLS; MOVING VARIANCE AND COVARIANCE; ROOT CAUSE ANALYSIS; SEMICONDUCTOR MANUFACTURING; SENSOR LEVEL; TECHNOLOGY NODES; TOOL CONDITION;

EID: 84863902218     PISSN: 10788743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ASMC.2012.6212927     Document Type: Conference Paper
Times cited : (7)

References (9)
  • 2
    • 46749130587 scopus 로고    scopus 로고
    • The Use of Principal Components and Univariate Charts to Control Multivariate Processes
    • M. A. G. Machado and A. F. B. Costa, "The Use of Principal Components and Univariate Charts to Control Multivariate Processes," Pesquisa Operacional, vol.28, no.1, pp. 173-196, 2008.
    • (2008) Pesquisa Operacional , vol.28 , Issue.1 , pp. 173-196
    • Machado, M.A.G.1    Costa, A.F.B.2
  • 4
    • 0037118559 scopus 로고    scopus 로고
    • A Survey of Maintenance Policies of Deteriorating Systems
    • H. Wang, "A Survey of Maintenance Policies of Deteriorating Systems," European Journal of Operational Research, vol. 139, no. 3, pp. 469-489, 2002.
    • (2002) European Journal of Operational Research , vol.139 , Issue.3 , pp. 469-489
    • Wang, H.1
  • 8
    • 70449481962 scopus 로고    scopus 로고
    • Recipe-independent Health Indicator for Tool Predictive Maintenance and Fault Diagnosis
    • A. Chen and J. Blue, "Recipe-independent Health Indicator for Tool Predictive Maintenance and Fault Diagnosis," IEEE Transactions on Semiconductor Manufacturing, vol. 22, no. 4, pp. 522-535, 2009.
    • (2009) IEEE Transactions on Semiconductor Manufacturing , vol.22 , Issue.4 , pp. 522-535
    • Chen, A.1    Blue, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.