메뉴 건너뛰기




Volumn 4, Issue 11, 2011, Pages 807-818

Mining top-K large structural patterns in a massive network

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING;

EID: 84863730213     PISSN: None     EISSN: 21508097     Source Type: Journal    
DOI: 10.14778/3402707.3402720     Document Type: Conference Paper
Times cited : (71)

References (36)
  • 1
    • 85152508485 scopus 로고    scopus 로고
    • Jeti. Version 0.7.6(Oct
    • Jeti. Version 0.7.6(Oct. 2006). http://jeti.sourceforge.net/.
    • (2006)
  • 3
    • 4544291404 scopus 로고    scopus 로고
    • Mining molecular fragments: Finding relevant substructures of molecules
    • C. Borgelt and M. Berthold. Mining molecular fragments: Finding relevant substructures of molecules. In ICDM, pages 211-218, 2002.
    • (2002) ICDM , pp. 211-218
    • Borgelt, C.1    Berthold, M.2
  • 5
    • 35448982399 scopus 로고    scopus 로고
    • Fg-index: towards verification-free query processing on graph databases
    • J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index: towards verification-free query processing on graph databases. In SIGMOD, pages 857-872, 2007.
    • (2007) SIGMOD , pp. 857-872
    • Cheng, J.1    Ke, Y.2    Ng, W.3    Lu, A.4
  • 8
    • 0033687401 scopus 로고    scopus 로고
    • Leveraging legacy system dollars for e-business
    • E. Erlikh. Leveraging legacy system dollars for e-business. IEEE IT Pro, pages 17-23, 2000.
    • (2000) IEEE IT Pro , pp. 17-23
    • Erlikh, E.1
  • 11
    • 0000989134 scopus 로고
    • On the notion of balance of a signed graph
    • F. Harary. On the notion of balance of a signed graph. Michigan Math. Journal, 2(2):143-146, 1953.
    • (1953) Michigan Math. Journal , vol.2 , Issue.2 , pp. 143-146
    • Harary, F.1
  • 12
    • 49749107567 scopus 로고    scopus 로고
    • Origami: Mining representative orthogonal graph patterns
    • M. A. Hasan, V. Chaoji, S. Salem, J. Besson, and M. J. Zaki. Origami: Mining representative orthogonal graph patterns. In ICDM, pages 153-162, 2007.
    • (2007) ICDM , pp. 153-162
    • Hasan, M.A.1    Chaoji, V.2    Salem, S.3    Besson, J.4    Zaki, M.J.5
  • 13
    • 4544314758 scopus 로고
    • Substructure discovery in the subdue system
    • L. Holder, D. Cook, and S. Djoko. Substructure discovery in the subdue system. In KDD, pages 169-180, 1994.
    • (1994) KDD , pp. 169-180
    • Holder, L.1    Cook, D.2    Djoko, S.3
  • 14
    • 78149328300 scopus 로고    scopus 로고
    • Efficient mining of frequent subgraph in the presence of isomorphism
    • J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraph in the presence of isomorphism. In ICDM, pages 549-552, 2003.
    • (2003) ICDM , pp. 549-552
    • Huan, J.1    Wang, W.2    Prins, J.3
  • 15
    • 84974733299 scopus 로고    scopus 로고
    • An apriori-based algorithm for mining frequent substructures from graph data
    • A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent substructures from graph data. In PKDD, pages 13-23, 2000.
    • (2000) PKDD , pp. 13-23
    • Inokuchi, A.1    Washio, T.2    Motoda, H.3
  • 16
    • 0037364958 scopus 로고    scopus 로고
    • Complete mining of frequent patterns from graphs:mining graph data
    • A. Inokuchi, T. Washio, and H. Motoda. Complete mining of frequent patterns from graphs:mining graph data. Machine Learning, 50(3):321-354, 2003.
    • (2003) Machine Learning , vol.50 , Issue.3 , pp. 321-354
    • Inokuchi, A.1    Washio, T.2    Motoda, H.3
  • 17
    • 32344436210 scopus 로고    scopus 로고
    • Graphs over time: Densification laws, shrinking diameters and possible explanations
    • J. K. J. Leskovec and C. Faloutsos. Graphs over time: Densification laws, shrinking diameters and possible explanations. In KDD, pages 177-187, 2005.
    • (2005) KDD , pp. 177-187
    • Leskovec, J.K.J.1    Faloutsos, C.2
  • 19
    • 4544385908 scopus 로고    scopus 로고
    • An efficient algorithm for discovering frequent subgraphs
    • M. Kuramochi and G. Karypis. An efficient algorithm for discovering frequent subgraphs. In IEEE TKDE, pages 1038-1051, 2004.
    • (2004) IEEE TKDE , pp. 1038-1051
    • Kuramochi, M.1    Karypis, G.2
  • 20
    • 19544365404 scopus 로고    scopus 로고
    • Grew-a scalable frequent subgraph discovery algorithm
    • M. Kuramochi and G. Karypis. Grew-a scalable frequent subgraph discovery algorithm. In ICDM, pages 439-442, 2004.
    • (2004) ICDM , pp. 439-442
    • Kuramochi, M.1    Karypis, G.2
  • 23
    • 36849095568 scopus 로고    scopus 로고
    • Efficient mining of iterative patterns for software specification discovery
    • D. Lo, S.-C. Khoo, and C. Liu. Efficient mining of iterative patterns for software specification discovery. In KDD, pages 460-469, 2007.
    • (2007) KDD , pp. 460-469
    • Lo, D.1    Khoo, S.-C.2    Liu, C.3
  • 24
    • 33646435063 scopus 로고    scopus 로고
    • A quantitative comparison of the subgraph miners mofa, gspan, ffsm, and gaston
    • I. F. M. Worlein, T. Meinl and M. Philippsen. A quantitative comparison of the subgraph miners mofa, gspan, ffsm, and gaston. In PKDD, pages 392-403, 2005.
    • (2005) PKDD , pp. 392-403
    • Worlein, I.F.M.1    Meinl, T.2    Philippsen, M.3
  • 26
    • 70849135404 scopus 로고    scopus 로고
    • Generating example data for dataflow programs
    • C. Olston, S. Chopra, and U. Srivastava. Generating example data for dataflow programs. In SIGMOD, pages 245-256, 2009.
    • (2009) SIGMOD , pp. 245-256
    • Olston, C.1    Chopra, S.2    Srivastava, U.3
  • 27
    • 12244294770 scopus 로고    scopus 로고
    • Spin: Mining maximal frequent subgraphs from graph databases
    • J. Prins, J. Yang, J. Huan, and W. Wang. Spin: Mining maximal frequent subgraphs from graph databases. In KDD, pages 581-586, 2004.
    • (2004) KDD , pp. 581-586
    • Prins, J.1    Yang, J.2    Huan, J.3    Wang, W.4
  • 28
    • 0021501054 scopus 로고
    • An essay on software reuse
    • T. Standish. An essay on software reuse. IEEE TSE, pages 494-497, 1984.
    • (1984) IEEE TSE , pp. 494-497
    • Standish, T.1
  • 30
    • 34748817998 scopus 로고    scopus 로고
    • Margin: Maximal frequent subgraph mining
    • L. Thomas, S. Valluri, and K. Karlapalem. Margin: Maximal frequent subgraph mining. In ICDM, pages 1097-1101, 2006.
    • (2006) ICDM , pp. 1097-1101
    • Thomas, L.1    Valluri, S.2    Karlapalem, K.3
  • 31
    • 78149322987 scopus 로고    scopus 로고
    • Computing frequent graph patterns from semistructured data
    • N. Vanetik, E. Gudes, and S. Shimony. Computing frequent graph patterns from semistructured data. In ICDM, pages 458-465, 2002.
    • (2002) ICDM , pp. 458-465
    • Vanetik, N.1    Gudes, E.2    Shimony, S.3
  • 32
    • 57149124218 scopus 로고    scopus 로고
    • Mining significant graph patterns by leap search
    • X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining significant graph patterns by leap search. In SIGMOD, pages 433-444, 2008.
    • (2008) SIGMOD , pp. 433-444
    • Yan, X.1    Cheng, H.2    Han, J.3    Yu, P.S.4
  • 33
    • 78149333073 scopus 로고    scopus 로고
    • gSpan: Graph-based substructure pattern mining
    • X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. In ICDM, pages 721-724, 2002.
    • (2002) ICDM , pp. 721-724
    • Yan, X.1    Han, J.2
  • 34
    • 77952334885 scopus 로고    scopus 로고
    • CloseGraph: Mining closed frequent graph patterns
    • X. Yan and J. Han. CloseGraph: Mining closed frequent graph patterns. In KDD, pages 286-295, 2003.
    • (2003) KDD , pp. 286-295
    • Yan, X.1    Han, J.2
  • 35
    • 3142736597 scopus 로고    scopus 로고
    • Graph indexing: A frequent structure-based approach
    • X. Yan, P. S. Yu, and J. Han. Graph indexing: A frequent structure-based approach. In SIGMOD, pages 335-346, 2004.
    • (2004) SIGMOD , pp. 335-346
    • Yan, X.1    Yu, P.S.2    Han, J.3
  • 36
    • 34548760779 scopus 로고    scopus 로고
    • Mining colossal frequent patterns by core pattern fusion
    • F. Zhu, X. Yan, J. Han, P. S. Yu, and H. Cheng. Mining colossal frequent patterns by core pattern fusion. In ICDE, pages 706-715, 2007.
    • (2007) ICDE , pp. 706-715
    • Zhu, F.1    Yan, X.2    Han, J.3    Yu, P.S.4    Cheng, H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.